早教吧作业答案频道 -->数学-->
已知,如图,在平面直角坐标系xOy中,二次函数y=ax2-73x+c的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;
题目详情
已知,如图,在平面直角坐标系xOy中,二次函数y=ax2-
x+c的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.

(1)求这个二次函数的解析式及的m值;
(2)求∠ADO的余切值;
(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.
7 |
3 |

(1)求这个二次函数的解析式及的m值;
(2)求∠ADO的余切值;
(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.
▼优质解答
答案和解析
(1)把A(0,8)、B(6,2)代入y=ax2-
x+c,得
,
解得
,
故该二次函数解析式为:y=
x2-
x+8.
把C(9,m),代入y=
x2-
x+8得到:m=y=
×92-
×9+8=5,即m=5.
综上所述,该二次函数解析式为y=
x2-
x+8,m的值是5;
(2)由(1)知,点C的坐标为:(9,5),
又由点A的坐标为(0,8),
所以直线AC的解析式为:y=-
x+8,
令y=0,则0=-
x+8,
解得x=24,
即OD=24,
所以cot∠ADO=
=
=3,即cot∠ADO=3;
(3)在△APQ与△MDQ中,∠AQP=∠MQD.
要使△APQ与△MDQ相似,则∠APQ=∠MDQ或∠APQ=∠DMQ(根据题意,这种情况不可能),
∴cot∠APQ=cot∠MDQ=3.
作BH⊥y轴于点H,
在直角△PBH中,cot∠P=
=3,
∴PH=18,OP=20,
∴点P的坐标是(0,20).

7 |
3 |
|
解得
|
故该二次函数解析式为:y=
2 |
9 |
7 |
3 |
把C(9,m),代入y=
2 |
9 |
7 |
3 |
2 |
9 |
7 |
3 |
综上所述,该二次函数解析式为y=
2 |
9 |
7 |
3 |
(2)由(1)知,点C的坐标为:(9,5),
又由点A的坐标为(0,8),
所以直线AC的解析式为:y=-
1 |
3 |
令y=0,则0=-
1 |
3 |
解得x=24,
即OD=24,
所以cot∠ADO=
OD |
OA |
24 |
8 |
(3)在△APQ与△MDQ中,∠AQP=∠MQD.
要使△APQ与△MDQ相似,则∠APQ=∠MDQ或∠APQ=∠DMQ(根据题意,这种情况不可能),
∴cot∠APQ=cot∠MDQ=3.
作BH⊥y轴于点H,
在直角△PBH中,cot∠P=
PH |
BH |
∴PH=18,OP=20,
∴点P的坐标是(0,20).
看了 已知,如图,在平面直角坐标系...的网友还看了以下:
两道简单的初2道数学题1.观察下列各式:9*1+0=9,9*2+1=19,9*3+2=29…你发现 2020-05-16 …
3x²-2x=0 (2x-1)²=9(x+1)²3x²-2x=0(2x-1)²=9(x+1)²已知 2020-05-16 …
九宫图的解法9位数.分布在九宫图坐标的左1-1..5-5..9-9.右1-1..5-5..9-9. 2020-06-11 …
如图,拦水坝的横断面为梯形ABCD,已知上底上CB=5米,迎水面坡度为1:3,背水面坡度为1:1, 2020-06-24 …
下底长12上底长9已知梯形上底下底长怎样求过对角线交点平行于底的直线的长度 2020-06-30 …
国家统计局公布了2011年第三季度的各项数据,前三季度GDP同比增长9.4%,第三季度GDP增长9 2020-07-05 …
1.一个角的余角为42度,则这个角的度数为()A:58度B:138度C:48度D:148度2.已知 2020-07-30 …
1.观察下列各式:9*1+0=9,9*2+1=19,9*3+2=29…你发现了什么规律?根据你发现的 2020-11-27 …
1.1.8乘9分之2.1.8除9分之2.2.1.8除2分之1乘9分之2.4分之3加4分之1除10.3 2020-12-17 …
1、有一个17米长的竹篱笆,要围成一边靠墙(墙长9米),面积为35平方米的长方形养鸡场,求养鸡场的长 2020-12-23 …