早教吧作业答案频道 -->数学-->
已知:在△ABC中,∠BAC=60°.(1)如图1,若AB=AC,点P在△ABC内,且PB=5,PA=3,PC=4,直接写出∠APC的度数.(2)如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;(3)如图3,
题目详情
已知:在△ABC中,∠BAC=60°.
(1)如图1,若AB=AC,点P在△ABC内,且PB=5,PA=3,PC=4,直接写出∠APC的度数.
(2)如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;
(3)如图3,若AB=2AC,点P在△ABC内,且PA=
,PB=5,∠APC=120°,直接写出PC的长.
(1)如图1,若AB=AC,点P在△ABC内,且PB=5,PA=3,PC=4,直接写出∠APC的度数.
(2)如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;
(3)如图3,若AB=2AC,点P在△ABC内,且PA=
3 |

▼优质解答
答案和解析
(1)把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.

由旋转可知AD=AP,BD=PC,∠DAB=∠PAC,
∴∠DAP=∠BAC=60°,
∴△ADP为等边三角形,
∴DP=PA=3,∠ADP=60°,
∵PB=5,BD=PC=4,PD=3,
∴PD2+BD2=PB2
∴∠BDP=90°,
∴∠APC=∠ADB=∠ADP+∠PDB=60°+90°=150°.
(2)如图2,

把△APC绕点A顺时针旋转,使点C与点B重合,得到△ADB,连接PD,
∴△APC≌△ADB,
∴AD=AP=3,DB=PC=4,∠PAC=∠DAB,∠APC=∠2,
∴∠DAP=∠BAC,
∵∠BAC=60°,
∴∠DAP=60°,
∴△DAP是等边三角形,
∴PD=3,∠1=60°,
∴PD2+DB2=32+42=52=PB2,
∴∠PDB=90°,
∴∠2=30°,
∴∠APC=30°;
(3)如图3

作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP,
∴∠AQB=∠APC=120°,
∵AB=2AC,
∴△ABQ与△ACP相似比为2,
∴AQ=2AP=2
,BQ=2CP,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°,
∵
=2,
∴∠APQ=90°,PQ=3,
∴∠AQP=30°
∴∠BQP=∠AQB-∠AQP=120°-30°=90°,
根据勾股定理得,BQ=
=4,
∴PC=
BQ=2.

由旋转可知AD=AP,BD=PC,∠DAB=∠PAC,
∴∠DAP=∠BAC=60°,
∴△ADP为等边三角形,
∴DP=PA=3,∠ADP=60°,
∵PB=5,BD=PC=4,PD=3,
∴PD2+BD2=PB2
∴∠BDP=90°,
∴∠APC=∠ADB=∠ADP+∠PDB=60°+90°=150°.
(2)如图2,

把△APC绕点A顺时针旋转,使点C与点B重合,得到△ADB,连接PD,
∴△APC≌△ADB,
∴AD=AP=3,DB=PC=4,∠PAC=∠DAB,∠APC=∠2,
∴∠DAP=∠BAC,
∵∠BAC=60°,
∴∠DAP=60°,
∴△DAP是等边三角形,
∴PD=3,∠1=60°,
∴PD2+DB2=32+42=52=PB2,
∴∠PDB=90°,
∴∠2=30°,
∴∠APC=30°;
(3)如图3

作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP,
∴∠AQB=∠APC=120°,
∵AB=2AC,
∴△ABQ与△ACP相似比为2,
∴AQ=2AP=2
3 |
∵
AQ |
AP |
∴∠APQ=90°,PQ=3,
∴∠AQP=30°
∴∠BQP=∠AQB-∠AQP=120°-30°=90°,
根据勾股定理得,BQ=
PB2-PQ2 |
∴PC=
1 |
2 |
看了 已知:在△ABC中,∠BAC...的网友还看了以下:
已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5已知a 2020-04-05 …
已知有序数组(a,b,c,d),现按下列方式重新写成数组(a1,b1,c1,d1)使a1=a+b, 2020-05-13 …
在△ABC中,已知sin[B+(C/2)]=4/5,求cos(A-B)的值.过程中有一步不懂,co 2020-06-03 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
数学厉害的进来1求证a²+3b²≥2b(a+b)2,求证a²+b²+2≥2a+2b3,已知a≠2, 2020-07-09 …
已知直线a,b,c,d,给出以下四个命题:①若a∥b,a⊥c,则b⊥c;②若a⊥c,b⊥c,则a∥ 2020-07-14 …
集合AB把集合{(a,b)|a属于A,b属于B}记作A×B,已知c={a}D-{1、2、3}求C× 2020-07-30 …
已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b 2020-08-01 …
已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥ 2020-11-02 …
已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥ 2020-11-02 …