早教吧作业答案频道 -->数学-->
求以下积分∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n}积分区间(0,π)n∈N+
题目详情
求以下积分
∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n} 积分区间(0,π) n∈N+
∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n} 积分区间(0,π) n∈N+
▼优质解答
答案和解析
首先用一个公式:∫[0→π] xf(sinx) dx = (π/2)∫[0→π] f(sinx) dx
∫[0→π] x(sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx+(π/2)∫[π/2→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
对后一项换元,令x=u+π/2,u:0→π/2
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (sin(u+π/2))^2n/[(sin(u+π/2))^2n+(cos(u+π/2))^2n] du
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosu)^2n/[(sinu)^2n+(cosu)^2n] du
将u写成x
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] 1 dx
=π²/4
∫[0→π] x(sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx+(π/2)∫[π/2→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
对后一项换元,令x=u+π/2,u:0→π/2
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (sin(u+π/2))^2n/[(sin(u+π/2))^2n+(cos(u+π/2))^2n] du
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosu)^2n/[(sinu)^2n+(cosu)^2n] du
将u写成x
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] 1 dx
=π²/4
看了 求以下积分∫x(sinx)^...的网友还看了以下:
如果多项式(m+2n)(m+n)+A可以分解为3m(m+2n),则A= 2020-04-27 …
(cosx)^3不定积分∫(cosx)^3dx=∫(cosx)^2dsinx=∫[1-(sinx) 2020-05-16 …
函数sinx除以|sinx|+cosx除以|cosx|的值域是多少 2020-05-24 …
4道有关数列的极限1.若[1-(k/k+1)^n]=1,则k的取值范围是.2.(n+1)^(2n+ 2020-06-06 …
设m=5分之1n,求m+2n分之2n+2n-m分之m+4n^2-m^2分之4mn 2020-06-12 …
1.证明sin2nx=sin((2n+1)x)cosx–cos((2n+1)x)sinx2.Sin 2020-06-13 …
不定积分能否上下同乘一个可能为零的数?比如.求(cosx)^2/(1+cosx)的原函数.可不可以 2020-06-22 …
求以下积分∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n}积分区间(0,π)n∈ 2020-07-16 …
(sinx+cosx)除以(sinx-cosx)的三次方根的商的不定积分 2020-08-02 …
在求极限中,以分子分母形式,为什么会有一会分母取无穷值,分子不变,一会分母中比如x·sinx·cos 2020-11-27 …