早教吧作业答案频道 -->数学-->
单纯形法求解maxz=4X1+3X2+6X3S.T.3X1+X2+3X3≤30;2X1+2X2+3X3≤40;X1,X2,X3≥0
题目详情
单纯形法求解 max z =4X1+3X2+6X3 S.T.3X1+X2+3X3≤30;2X1+2X2+3X3≤40;X1,X2,X3≥0
▼优质解答
答案和解析
3x1+x2+3x3≤30 (1')
2x1+2x2+3x3≤40 (2')
x1≥0 (3')
x2≥0 (4')
x3≥0 (5')
3x1+x2+3x3=30 (1)
2x1+2x2+3x3=40 (2)
x1=0 (3)
x2=0 (4)
x3=0 (5)
case 1:
from (1) ,(2), (3), x1=0
x2 +3x3=30
2x2+3x3=40
x2 =10, x3= 20/3
satisfy (4') and (5')
(x1,x2,x3) = (0,10, 20/3)
z =4x1+3x2+6x3
=30+40
=70
case 2:
from (1) ,(2), (4), x2=0
3x1+3x3=30
2x1+3x3=40
x1 =-10, does not satisfy (3')
rejected case 2
case 3:
from (1) ,(2), (5), x3=0
3x1+x2=30
2x1+2x2=40
x1=5, x2=15
satisfy (3') and (4')
(x1,x2,x3) = (5,15, 0)
z =4x1+3x2+6x3
=20+45
=65
case 4:
from (1) ,(3), (4), x1=x2=0
3x1+x2+3x3=30
x3=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (5')
(x1,x2,x3) = (0,0, 10)
z =4x1+3x2+6x3
=60
case 5:
from (1) ,(3), (5), x1=x3=0
3x1+x2+3x3=30
x2=30
2x1+2x2+3x3≤40 (2')
does not satisfy (2')
rejected case 5
case 6:
from (1) ,(4), (5), x2=x3=0
3x1+x2+3x3=30
x1=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (3')
(x1,x2,x3) = (10,0, 0)
z =4x1+3x2+6x3
=40
case 7:
from (2) ,(3), (4), x1=x2=0
2x1+2x2+3x3=40
x3=40/3
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 7
case 8:
from (2) ,(3), (5), x1=x3=0
2x1+2x2+3x3=40
x2=20
3x1+x2+3x3≤30 (1')
satisfy (1') and (4')
(x1,x2,x3) = ( 0,20,0)
z =4x1+3x2+6x3
=60
case 9:
from (2) ,(4), (5), x2=x3=0
2x1+2x2+3x3=40
x1=20
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 9
ie max z = case 1=70
2x1+2x2+3x3≤40 (2')
x1≥0 (3')
x2≥0 (4')
x3≥0 (5')
3x1+x2+3x3=30 (1)
2x1+2x2+3x3=40 (2)
x1=0 (3)
x2=0 (4)
x3=0 (5)
case 1:
from (1) ,(2), (3), x1=0
x2 +3x3=30
2x2+3x3=40
x2 =10, x3= 20/3
satisfy (4') and (5')
(x1,x2,x3) = (0,10, 20/3)
z =4x1+3x2+6x3
=30+40
=70
case 2:
from (1) ,(2), (4), x2=0
3x1+3x3=30
2x1+3x3=40
x1 =-10, does not satisfy (3')
rejected case 2
case 3:
from (1) ,(2), (5), x3=0
3x1+x2=30
2x1+2x2=40
x1=5, x2=15
satisfy (3') and (4')
(x1,x2,x3) = (5,15, 0)
z =4x1+3x2+6x3
=20+45
=65
case 4:
from (1) ,(3), (4), x1=x2=0
3x1+x2+3x3=30
x3=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (5')
(x1,x2,x3) = (0,0, 10)
z =4x1+3x2+6x3
=60
case 5:
from (1) ,(3), (5), x1=x3=0
3x1+x2+3x3=30
x2=30
2x1+2x2+3x3≤40 (2')
does not satisfy (2')
rejected case 5
case 6:
from (1) ,(4), (5), x2=x3=0
3x1+x2+3x3=30
x1=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (3')
(x1,x2,x3) = (10,0, 0)
z =4x1+3x2+6x3
=40
case 7:
from (2) ,(3), (4), x1=x2=0
2x1+2x2+3x3=40
x3=40/3
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 7
case 8:
from (2) ,(3), (5), x1=x3=0
2x1+2x2+3x3=40
x2=20
3x1+x2+3x3≤30 (1')
satisfy (1') and (4')
(x1,x2,x3) = ( 0,20,0)
z =4x1+3x2+6x3
=60
case 9:
from (2) ,(4), (5), x2=x3=0
2x1+2x2+3x3=40
x1=20
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 9
ie max z = case 1=70
看了 单纯形法求解maxz=4X1...的网友还看了以下:
在实数范围内分解因式(x2+x)(x2+x-3)+2x后面是平方的意思! 2020-04-27 …
以下是解分式方程1-x2-x-3=1x-2,去分母后的结果,其中正确的是()A.1-x-3=1B. 2020-05-01 …
(x2+x-3)/(x-1)(x-2)(x-3)=A/(x-1)+B/(x-2)+C/(x-3). 2020-05-16 …
请先阅读下列解题过程,再仿做下面的题.已知x2+x-1=0,求x3+2x2+3的值.x3+2x2+ 2020-05-17 …
(2x+3)2=4(2x+3)5(x2-x)=3(x2+x)分解因式 2020-06-03 …
已知M=x³-x+6,N=x3-x2+x+3计算:(M-x3)(N-x3)M(N+x2)已知(x- 2020-07-18 …
x2-x-3=0两个解是?x2-x-3=0x的两个解是?x1乘以x2等于多少啊? 2020-07-30 …
两个就差常数项的多项式的公因式是什么比如x2+x+1和x2+x+3的公因式是什么这算互素吗 2020-08-01 …
如何求函数y=﹙x2-x-3﹚/﹙x2+x-12﹚的值域得到的是y=1+﹙-2x+9﹚/+x²-x 2020-08-01 …
用判别式求下列函数的值域:(1)y=(x2-x+3)÷(x2-x+1);(2)y=8÷(x2-4x 2020-08-01 …