早教吧作业答案频道 -->其他-->
已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).(1)求f(0)的值,并证明对任意的x∈R,有f(x)>0;(2)设当x<0时,都有f(x)>f(0)
题目详情
已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).
(1)求f(0)的值,并证明对任意的x∈R,有f(x)>0;
(2)设当x<0时,都有f(x)>f(0),证明:f(x)在(-∞,+∞)上是减函数.
(1)求f(0)的值,并证明对任意的x∈R,有f(x)>0;
(2)设当x<0时,都有f(x)>f(0),证明:f(x)在(-∞,+∞)上是减函数.
▼优质解答
答案和解析
(1)可得f(0)•f(0)=f(0)
∵f(0)≠0
∴f(0)=1
又对于任意x∈R, f(x)=f(
+
)=[f(
)]2≥0又f(
)≠0,∴f(x)>0
(2)设x1,x2∈R且x1<x2,则f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x2)[f(x1-x2)-1]
∵x1-x2<0
∴f(x1-x2)>f(0)=1
∴f(x1-x2)-1>0
对f(x2)>0
∴f(x2)f[(x1-x2)-1]>0
∴f(x1)>f(x2)故f(x)在R上是减函数
∵f(0)≠0
∴f(0)=1
又对于任意x∈R, f(x)=f(
x |
2 |
x |
2 |
x |
2 |
x |
2 |
(2)设x1,x2∈R且x1<x2,则f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x2)[f(x1-x2)-1]
∵x1-x2<0
∴f(x1-x2)>f(0)=1
∴f(x1-x2)-1>0
对f(x2)>0
∴f(x2)f[(x1-x2)-1]>0
∴f(x1)>f(x2)故f(x)在R上是减函数
看了 已知f(x)是定义在R上的恒...的网友还看了以下:
函数f(x,y)在y>x>0时连续可导已知对于任意z>y>x,有f(x,y)*f(y,z)=f(x 2020-05-22 …
有两个相同容积的密闭容器X、Y,在25℃时,X中充入agA气体,Y中充入agCH4气体,X与Y内压 2020-06-04 …
1.设函数x^2+y^2≠0时,f(x,y)=xy/x^2+y^2;当x^2+y^2=0时,f(x 2020-06-12 …
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)> 2020-06-12 …
如图为一列横波在f时刻的波形图此时a质点向上运动的波速v=10m/s.(1)此时开始经过5s时质点 2020-07-15 …
定义在R上的函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y)-1定义在R上的函数 2020-08-01 …
人教版高中数学必修一求教定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任 2020-10-31 …
一个关于偏导数的问题二元函数f(x,y):当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2 2020-11-01 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …