早教吧作业答案频道 -->数学-->
已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关
题目详情
已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.

(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;
(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.

(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;
(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.
▼优质解答
答案和解析
(1)AD+BE=AB.
(2)成立.
(方法一):在AB上截取AG=AD,连接CG.
∵AC平分∠MAB,
∴∠DAC=∠CAB,
又∵AC=AC,AD=AG,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AM∥BN,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
∵∠ABC=∠CBE,BC=BC,
∴△BGC≌△BEC.
∴BG=BE,
∴AD+BE=AG+BG,AD+BE=AB.
(方法二):过点C作直线FG⊥AM,垂足为点F,交BN于点G.作CH⊥AB,垂足为点H.
由(1)得AF+BG=AB,
∵AM∥BN,∠AFG=90°,
∴∠BGF=∠FGE=90°,
∵∠DAC=∠CAB,∠ABC=∠CBE,
∴CF=CH,CH=CG,
∴CF=CG,
∵∠FCD=∠ECG,
∴△CFD≌△CGE.
∴DF=EG,
∴AD+BE=AF+BG=AB.
(方法三):延长BC,交AM于点F.
∵AM∥BN,
∴∠FCD=∠CBG,
∵∠CBH=∠CBG,
∴∠FCD=∠CBH,
∴AF=AB,
∵∠DAC=∠CAB,AC=AC,
∴△AFC≌△ABC,CF=CB,
∵∠ECG=∠BCG,
∴△FCD≌△BCE,
∴DF=BE,
∴AD+BE=AD+DF=AF=AB.
(3)不成立.
存在.当点D在射线AM上、点E在射线BN的反向延长线上时(如图①),AD-BE=AB.
当点D在射线AM的反向延长线上,点E在射线BN上时(如图②),BE-AD=AB.
(2)成立.
(方法一):在AB上截取AG=AD,连接CG.

∵AC平分∠MAB,
∴∠DAC=∠CAB,
又∵AC=AC,AD=AG,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AM∥BN,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
∵∠ABC=∠CBE,BC=BC,
∴△BGC≌△BEC.
∴BG=BE,
∴AD+BE=AG+BG,AD+BE=AB.
(方法二):过点C作直线FG⊥AM,垂足为点F,交BN于点G.作CH⊥AB,垂足为点H.
由(1)得AF+BG=AB,

∵AM∥BN,∠AFG=90°,
∴∠BGF=∠FGE=90°,
∵∠DAC=∠CAB,∠ABC=∠CBE,
∴CF=CH,CH=CG,
∴CF=CG,
∵∠FCD=∠ECG,
∴△CFD≌△CGE.
∴DF=EG,
∴AD+BE=AF+BG=AB.
(方法三):延长BC,交AM于点F.
∵AM∥BN,
∴∠FCD=∠CBG,
∵∠CBH=∠CBG,
∴∠FCD=∠CBH,
∴AF=AB,
∵∠DAC=∠CAB,AC=AC,
∴△AFC≌△ABC,CF=CB,
∵∠ECG=∠BCG,
∴△FCD≌△BCE,
∴DF=BE,
∴AD+BE=AD+DF=AF=AB.
(3)不成立.
存在.当点D在射线AM上、点E在射线BN的反向延长线上时(如图①),AD-BE=AB.
当点D在射线AM的反向延长线上,点E在射线BN上时(如图②),BE-AD=AB.

看了 已知:如图所示,直线MA∥N...的网友还看了以下:
极限问题(估计很少有人做出)已知m∈正整数,a和b∈R,若lim{〔(1+x)^m+a〕/x}=b 2020-05-13 …
我觉得很难1.如果m为整数,那么使分式m+3/m+1的值为整数m的值有几个?A.2B.3C.4D. 2020-06-06 …
若函数f(x)=logm(x-3/x+3),定义域为a,b,值域logm(m(b-1)),logm 2020-06-25 …
已知a-b为实数,且ab=1设m=a+1分之a+b+1分之b,n=a+1分之1+b+1分之1则m, 2020-07-13 …
如图,在平面直角坐标系中xOy中,已知点A(1,m+1),B(a,m+1),C(3,m+3),D( 2020-07-22 …
数学中什么是三次齐项式?条件充分性判断:1.M+N=4abc(1),M=a(b+c-a)^2+b( 2020-07-28 …
填空:(1)方程x+1x−8=1012的根是10,则另一个根是812812.(2)如果方程x2−b 2020-07-30 …
立体几何已知空间直角坐标系Oxyz中的点A(1,1,1),平面a过点A且与直线OA垂直,动点P(x 2020-08-02 …
1.若M÷(a^2-b^2)=(2xy-y^2)÷(a^2-b^2)+(x-y)÷(x+y)求M的值 2020-10-31 …
数论问题求证a^[1+kφ(m)]≡a(modm)(即左边为a的1+kφ(m)次方),其中k为任意正 2020-11-06 …