早教吧作业答案频道 -->数学-->
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:变化
题目详情
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:




(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:




(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
▼优质解答
答案和解析
证明:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
变化一:
证明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ为⊙O的切线;
变化二.
(1)若OA向上平移,变化一中的结论还成立;
(2)原题中的结论还成立.

理由:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OP⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原题中的结论还成立,如图.
∵RQ为⊙O的切线,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
变化一:
证明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ为⊙O的切线;

变化二.
(1)若OA向上平移,变化一中的结论还成立;
(2)原题中的结论还成立.

理由:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OP⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原题中的结论还成立,如图.
看了 有这样一道习题:如图1,已知...的网友还看了以下:
(2014•东城区二模)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,P是AC边上一 2020-05-13 …
关于VB中从1到35随即产生5个数,要求有些数不能同同时出现的问题,写完后每次都是运算卡死,如1不 2020-05-20 …
哲学与人生(五)1、下列不属于冯友兰所划分的人生境界的是:()(30.0分)A.道德境界B.自由境 2020-06-04 …
公说公有理,婆说婆有理.例:正方:读书破万卷,下笔如有神.反方:读书,如果不与思考结合,不与创新相 2020-06-05 …
如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不 2020-07-17 …
如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB 2020-08-03 …
男女同学之间互相交往是很平常的事。如果不与异性同学交往,就失去了与异性同学互相学习的机会。男女同学之 2020-11-02 …
从ABCD中选一个,以青春为话题,仿句E是书架,是智慧.没有书的青春是不开的花.青春如果不与书结缘, 2020-11-11 …
如图,已知中,,,,是边上的中点,是边上的点(不与端点重合),是边上的点,且∥,延长与直线相交于点, 2020-12-07 …
1950年,英国政府认为,承认新中国虽不是保护英国在华利益的“灵丹妙药”,但至少可以提供一定程度的保 2020-12-10 …