早教吧作业答案频道 -->数学-->
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:变化
题目详情
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:




(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:




(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
▼优质解答
答案和解析
证明:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
变化一:
证明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ为⊙O的切线;
变化二.
(1)若OA向上平移,变化一中的结论还成立;
(2)原题中的结论还成立.

理由:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OP⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原题中的结论还成立,如图.
∵RQ为⊙O的切线,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
变化一:
证明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ为⊙O的切线;

变化二.
(1)若OA向上平移,变化一中的结论还成立;
(2)原题中的结论还成立.

理由:连接OQ,
∵RQ为⊙O的切线,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OP⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原题中的结论还成立,如图.

看了 有这样一道习题:如图1,已知...的网友还看了以下:
下列句中加点成语运用有误的一项是()A.正在热播的无厘头喜剧《龙门镖局》,成为人们茶余饭后津津有味 2020-05-14 …
在使用冲天炉熔炼铸铁的过程中,( )是熔化过程中要解决的重要问题之一 A.脱磷 B.脱碳 2020-05-19 …
以下哪个不是子网地址规划需要回答的基本问题之一?A.这个被选定的子网掩码可以产生多少个子网?B. 2020-05-23 …
确定护理诊断时应注意: ()A.护理诊断是关于病人疾病所引起的生理问题B.一个疾病只有一项护理诊断 2020-06-07 …
每支铅笔a元,每支钢笔b元,两种笔各买6支.b一a表示什么,(b一a)x6表示什么 2020-07-08 …
a十a十a一b一b二8·2b十b十b一a一a二1·7则a二?b二? 2020-07-13 …
某剧组准备拍摄《大唐王朝》的纪录片,你认为下列哪一场景不可能在片中出现A.唐太宗和魏征在商讨如何处 2020-07-28 …
通分:4a平方b分之3,6b平方c分之5,2ac平方分之1,依旧急约分:X平方一6X十9分之x平方 2020-07-30 …
整式(a十b一c)(a一b十c)十(b一a十c)(b一a一c)的公因式是(). 2020-08-01 …
(a—b)(a—c)(b—c)(b一a)(c—a)(c—b)等于? 2020-11-30 …