早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的
题目详情
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
▼优质解答
答案和解析
(1)证明:∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,

∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
已知椭圆x^2/a^2+Y^2/b^2=1(a>b>0)的离心率为根号3/3,过右焦点F的直线l与 2020-05-12 …
已知:二次函数y=x^-(m-3)x-3m的图像与x轴交与A,B两点,A在原点左侧,B在原点右侧, 2020-06-04 …
如图,直线L交x轴、y轴分别于A、B两点,A(a,0)B(0,b),且(a-b)2+|b-4|=0 2020-06-14 …
已知:平面直角坐标系内有两点A,B,点A(-6,a+3)在x轴上,点B(b-2,5)在y轴上.(1 2020-06-14 …
如图为一突触的结构,在a、d两点连接一个灵敏电流计.已知ab=bd,若分别刺激b、c两点,灵敏电流 2020-07-07 …
如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a,b满足a+2的绝对值 2020-07-20 …
2.在数轴上,A点表示的距离是-2,B点表示的距离是3,则A点与B点之间的的距离是多少?3.结合第 2020-07-21 …
(a+b)的2次方(a-b)的2次方-(a的2次方+b的2次方)(a-b)答案是a的4次方-a的3 2020-08-02 …
如图为一突触的结构,在a、d两点连接一个灵敏电流计.已知ab=bd,若分别刺激b、c两点,灵敏电流计 2020-12-30 …
在数轴上A点表示a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b-6)的 2021-01-20 …