早教吧作业答案频道 -->数学-->
如图,直线L交x轴、y轴分别于A、B两点,A(a,0)B(0,b),且(a-b)2+|b-4|=0(1)求A、B两点坐标;(2)C为线段AB上一点,C点的横坐标是3,P是y轴正半轴上一点,且满足∠OCP=45°,求P点坐
题目详情
如图,直线L交x轴、y轴分别于A、B两点,A(a,0)B(0,b),且(a-b)2+|b-4|=0

(1)求A、B两点坐标;
(2)C为线段AB上一点,C点的横坐标是3,P是y轴正半轴上一点,且满足∠OCP=45°,求P点坐标;
(3)在(2)的条件下,过B作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.

(1)求A、B两点坐标;
(2)C为线段AB上一点,C点的横坐标是3,P是y轴正半轴上一点,且满足∠OCP=45°,求P点坐标;
(3)在(2)的条件下,过B作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.
▼优质解答
答案和解析
(1) ∵(a-b)2+|b-4|=0,
∴a-b=0,b-4=0,
∴a=4,b=4,
∴A(4,0),B(0,4);
(2)如图1过点O作OM⊥OC交CP的延长线于M,
∵∠OCP=45°,
∴△OMC是等腰直角三角形,
∴OM=OC,
设直线AB的解析式为:y=kx+4,
∴0=4k+4,
∴k=-1,
∴直线AB的解析式为:y=-x+4,
当x=3时,y=1,
∴C(3,1),
∴M(-1,3),
∴直线CP的解析式为:y=-
x+
,
∴P(0,
);

(3)过点A作AF⊥x轴,交OC的延长线于F,由(1)证得OA=OB,由(2)的条件得∠DBO=∠AOF,
∵∠BOD=∠OAF=90°,
在△BOD与△OAF中,
,
∴△BOD≌△OAF,
∴OD=AF,∠BDO=∠AFO,
∵∠CAE=∠CAF=45°,
∵∠CEA=∠BDO,
∴∠CEA=∠AFO,
在△ACE与△ACF中
,
∴△ACE≌△ACF,
∴AE=AF,
∵OD=AF,
∴OD=AE.
∴a-b=0,b-4=0,

∴a=4,b=4,
∴A(4,0),B(0,4);
(2)如图1过点O作OM⊥OC交CP的延长线于M,
∵∠OCP=45°,
∴△OMC是等腰直角三角形,
∴OM=OC,
设直线AB的解析式为:y=kx+4,
∴0=4k+4,
∴k=-1,
∴直线AB的解析式为:y=-x+4,
当x=3时,y=1,
∴C(3,1),
∴M(-1,3),
∴直线CP的解析式为:y=-
1 |
2 |
5 |
2 |
∴P(0,
5 |
2 |

(3)过点A作AF⊥x轴,交OC的延长线于F,由(1)证得OA=OB,由(2)的条件得∠DBO=∠AOF,
∵∠BOD=∠OAF=90°,
在△BOD与△OAF中,
|
∴△BOD≌△OAF,
∴OD=AF,∠BDO=∠AFO,
∵∠CAE=∠CAF=45°,
∵∠CEA=∠BDO,
∴∠CEA=∠AFO,
在△ACE与△ACF中
|
∴△ACE≌△ACF,
∴AE=AF,
∵OD=AF,
∴OD=AE.
看了 如图,直线L交x轴、y轴分别...的网友还看了以下:
已知以o为圆心的圆的半径为3,A为线段op的中点,当op满足下列条件时,分别指出A与⊙O的位置关系 2020-04-27 …
解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球 2020-05-13 …
当x和y满足关系时,分式3(2x-y)/5(2x-y)的值是3/5当x和y满足关系时,分式3(2x 2020-05-21 …
已知:sin∠ABC=1/3,⊙O半径为2,⊙O与射线BA相交于E、F两点,EF=2√3,求BO的 2020-07-16 …
已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O 2020-07-26 …
已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O 2020-07-26 …
映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有()(A)1个(B) 2020-07-30 …
映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有()(A)1个(B) 2020-07-30 …
已知△ABC的外接圆半径R=根号3,且满足2R(sin平方A-sin平方C)=(a-b)sinB, 2020-08-01 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …