早教吧作业答案频道 -->其他-->
如果定义:“到三角形的两个顶点距离相等的点,叫做此三角形的准外心.”例如:如图1所示,若PC=PB,则称点P为△ABC的准外心.(1)观察并思考,△ABC的准外心有个.(2)如图2,
题目详情
如果定义:“到三角形的两个顶点距离相等的点,叫做此三角形的准外心.”例如:如图1所示,若PC=PB,则称点P为△ABC的准外心.

(1)观察并思考,△ABC的准外心有______个.
(2)如图2,△ABC是等边三角形,CD⊥AB,准外心点P在高CD上,且PD=
AB,在图中画出点P点,求∠APB的度数.
(3)已知△ABC为直角三角形,斜边BC=5,AB=3,准外心点P在AC边上,在图中画出P点,并求PA的长.

(1)观察并思考,△ABC的准外心有______个.
(2)如图2,△ABC是等边三角形,CD⊥AB,准外心点P在高CD上,且PD=
1 |
2 |
(3)已知△ABC为直角三角形,斜边BC=5,AB=3,准外心点P在AC边上,在图中画出P点,并求PA的长.
▼优质解答
答案和解析
(1)∵到三角形的两个顶点距离相等的点,叫做此三角形的准外心,
∴△ABC的准外心是:AB,BC,AC的垂直平分线上的点.
∴△ABC的准外心有无数个.
故答案为:无数;
(2)①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=
DB=
AB,
与已知PD=
AB矛盾,∴PB≠PC,
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=
AB,得PD=BD,
∴∠APD=45°,
∴∠APB=90°;
(3)∵BC=5,AB=3,
∴AC=
=4,
①若PB=PC,设PA=x,则x2+32=(4-x)2,
∴x=
,即PA=
,
②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或
.

∴△ABC的准外心是:AB,BC,AC的垂直平分线上的点.
∴△ABC的准外心有无数个.
故答案为:无数;
(2)①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=
| ||
3 |
| ||
6 |
与已知PD=
1 |
2 |
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=
1 |
2 |
∴∠APD=45°,
∴∠APB=90°;
(3)∵BC=5,AB=3,
∴AC=
BC2−AB2 |
①若PB=PC,设PA=x,则x2+32=(4-x)2,
∴x=
7 |
8 |
7 |
8 |
②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或
7 |
8 |
看了 如果定义:“到三角形的两个顶...的网友还看了以下:
如图,已知△ABC和点P.(1)画△ABC关于点P的对称图形△A′B′C′;(2)过点P任意画一条 2020-05-02 …
A,B是两个灯塔,已知灯塔A在灯塔B的偏西30°方向,南轮船P上观察,灯塔A在轮船P的北偏西70° 2020-05-16 …
完成活动A所需的时间,悲观(P)的估计需要36天,最可能(ML)的估计需21天,乐观(0)的估计需6 2020-05-26 …
1,P(A)=0.4P(AB)=0.2P(A|B)+P(A非|B非)=1求P(A并B)2,证明若P 2020-06-14 …
如图所示,小明将看3D电影的两只镜片P、Q平行放置,把发光的白炽灯放在P的左边,分别在A(PQ之间 2020-06-27 …
长方形ABCD中,AB=1,AD=3,以点B为圆心,BA长为半径作圆交BC于点E.在弧AE上找一点 2020-07-30 …
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|.A),则必有()A 2020-11-01 …
“风车之国”的风车是用来()A.观赏的B.向堤外提水的C.吹风的D.自然的 2020-11-11 …
初三数学题——《新观察》(不会插图片,题目都是新观察上的)1.如图,A(4,0),B(0,4),圆O 2020-11-24 …
“风车之国”的风车是用来()A.观赏的B.向堤外提水的C.吹风的D.自然的 2021-01-13 …