早教吧作业答案频道 -->数学-->
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.(1)直线AB与⊙O相切吗?请说明理由;(2)若PC=25,求⊙O的半径;(3
题目详情
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延长线交直线l于点C,连结AB,AB=AC.

(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
,求⊙O的半径;
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.

(1)直线AB与⊙O相切吗?请说明理由;
(2)若PC=2
5 |
(3)线段BC的中点为M,当⊙O的半径为r为多少时,直线AM与⊙O相切.
▼优质解答
答案和解析
(1)直线AB与⊙O相切.理由如下:连接OB,
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
)2-(5-r)2,
在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
)2-(5-r)2=52-r2,解得r=3,
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
OA=
,
即⊙O的半径为r为
时,直线AM与⊙O相切.
∵AB=AC,
∴∠ABC=∠ACB,
又∵OP=OB,
∴∠OPB=∠OBP,
∵OA⊥l,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
而∠APC=∠OPB=∠OBP,
∴∠OBP+∠ABC=90°,即∠OBA=90°,
∴OB⊥AB,
∴直线AB是⊙O的切线;
(2)设⊙O半径为r,则OP=OB=r,PA=5-r;
在Rt△ACP中,AC2=PC2-PA2=(2
5 |

在Rt△AOB中,AB2=OA2-OB2=52-r2,
∵AC=AB,
∴(2
5 |
即⊙O的半径为3;
(3)作OT⊥AM于T,如图,
当OT=OB时,AM与⊙相切,
∴∠OAB=∠OAT,
∵AB=AC,M为线段BC的中点,
∴∠CAM=∠MAB,
而∠MAB=∠OAB+∠OAT,
∴∠CAM=2∠MAO,
∵∠CAO=90°
∴∠OAT=30°,
∴OT=
1 |
2 |
5 |
2 |
即⊙O的半径为r为
5 |
2 |
看了 如图,已知直线l与⊙O相离,...的网友还看了以下:
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,点B在⊙O上,BP的延 2020-07-13 …
如图,AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,BC=3,CD=2AB是⊙O的直径 2020-07-21 …
如图已知直线l与圆o相离,OA垂直l于点A,OA与圆O相交于点B用户名:小智怡|分类:1分钟前如图 2020-07-26 …
如图,已知直线l与O相离,OA⊥l于点A,OA与O相交于点P,点B为O上一点,BP的延长线交直线l 2020-07-26 …
如图,已知直线l与O相离,OA⊥l于点A,OA=5,OA与O相交于点P,AB与O相切于点B,BP的 2020-07-26 …
直线AB经过圆O的圆心,与圆O相交于点AB,点C在圆O上,且角AOC=30°,点P是直线AB上的一 2020-07-26 …
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线 2020-07-26 …
如图,已知直线l与O相离,OA⊥l于点A,OA=10,OA与O相交于点P,AB与O相切于点B,BP 2020-07-31 …
如图1,BC是O的直径,点A在O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与O相交于点H 2020-11-03 …
点O在∠APB的平分线上,圆O与PA相切与点C,求证PB与圆O相切点A、P、B均是圆O的点,连接AP 2021-01-11 …