早教吧作业答案频道 -->其他-->
(2014•临沂一模)已知命题p:若a=(1,2)与b=(-2,λ)共线,则λ=-4;命题q:∀k∈R,直线y=kx+1与圆x2+y2-2y=0相交.则下面结论正确的是()A.¬p∨q是真命题B.p∧¬q是真命题C.p∧q
题目详情
(2014•临沂一模)已知命题p:若a=(1,2)与b=(-2,λ)共线,则λ=-4;命题q:∀k∈R,直线y=kx+1与圆x2+y2-2y=0相交.则下面结论正确的是( )
A.¬p∨q是真命题
B.p∧¬q是真命题
C.p∧q是假命题
D.p∨q是假命题
A.¬p∨q是真命题
B.p∧¬q是真命题
C.p∧q是假命题
D.p∨q是假命题
▼优质解答
答案和解析
由命题p:
∵a=(1,2)与b=(-2,λ)共线,
∴1×λ-2×(-2)=0,
∴λ=-4,
∴命题p为真命题;
由命题q:
∵直线y=kx+1,
x=0,y=1,
∴直线y=kx+1过定点(0,1),
又∵圆x2+y2-2y=0的圆心为(0,1),
∴∀k∈R,直线y=kx+1与圆x2+y2-2y=0相交,
∴命题q为真命题;
选项A:¬p∨q是真命题 正确;
选项B:p∧¬q是真命题 错误;
选项C:p∧q是假命题 错误;
选项D:p∨q是假命题 错误
故选A.
∵a=(1,2)与b=(-2,λ)共线,
∴1×λ-2×(-2)=0,
∴λ=-4,
∴命题p为真命题;
由命题q:
∵直线y=kx+1,
x=0,y=1,
∴直线y=kx+1过定点(0,1),
又∵圆x2+y2-2y=0的圆心为(0,1),
∴∀k∈R,直线y=kx+1与圆x2+y2-2y=0相交,
∴命题q为真命题;
选项A:¬p∨q是真命题 正确;
选项B:p∧¬q是真命题 错误;
选项C:p∧q是假命题 错误;
选项D:p∨q是假命题 错误
故选A.
看了 (2014•临沂一模)已知命...的网友还看了以下:
为啥任何一组勾股数必定可以表示为a=p^2-q^2,b=2pq,c=p^2+q^2p、q(q 2020-05-13 …
AAA测试样题数学第五题设q 是三次多项式 f (x) = x3 - 3x + 10 的一个根,且 2020-05-17 …
已知p^2-p-1=0,1-q-q^2=0,且pq不等于1.则pq+1/q1-q-q^2=0因为q 2020-06-07 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
1.已知关于x的方程x^2-(a+2)x+a-2b=0的判别式等于0.且1/2是方程的根,则a+b 2020-08-01 …
设p,q是两个大于3的质数,求证:p^2≡q^2(mod24)用费马小定理和欧拉定理的知识求解,设 2020-08-02 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …