早教吧作业答案频道 -->数学-->
数列an中an+1=3an+2ˆn+6bn=an+2ˆn+3a1=-2证明bn为等比数列并求an第二问。求数列an/bn的前n项和sn
题目详情
数列an中 an+1=3an+2ˆn+6 bn=an+2ˆn+3 a1=-2
证明bn为等比数列 并求an
第二问。求数列an/bn的前n项和sn
证明bn为等比数列 并求an
第二问。求数列an/bn的前n项和sn
▼优质解答
答案和解析
a(n+1)=3an+2ˆn+6
bn=an+2ˆn+3
b(n+1)=a(n+1)+2ˆ(n+1)+3
=3an+2ˆn+6+2ˆ(n+1)+3
=3an+2ˆn+2*2ˆn+9
=3an+3*2ˆn+9
=3(an+2ˆn+3)
b(n+1)/bn
=3(an+2ˆn+3)/(an+2ˆn+3)
=3
所以是以3为公比的等比数列
b1=a1+2^1+3
=-2+2+3
=3
bn=b1*q^(n-1)
=3*3^(n-1)
=3^n
an+2^n+3=3^n
an=3^n-2^n-3
an/bn
=(3^n-2^n-3)/3^n
=3^n/3^n-2^n/3^n-3/3^n
=1-(2/3)^n-(1/3)^(n-1)
sn
=1-(2/3)^1-(1/3)^0+(2/3)^2-(1/3)^1+.+1-(2/3)^n-(1/3)^(n-1)
=1+1+1+.+1-(2/3)^1-(2/3)^2-.-(2/3)^n-(1/3)^0-(1/3)^1-.-(1/3)^(n-1)
=n-(2/3)*[1-(2/3)^n]/(1-2/3)-[1-(1/3)^n]/(1-1/3)
=n-2*[1-(2/3)^n]-3*[1-(1/3)^n]/2
=n-2+2*(2/3)^n-3/2+3*(1/3)^n/2
=2*(2/3)^n+(1/3)^(n-1)/2+n-5/2
bn=an+2ˆn+3
b(n+1)=a(n+1)+2ˆ(n+1)+3
=3an+2ˆn+6+2ˆ(n+1)+3
=3an+2ˆn+2*2ˆn+9
=3an+3*2ˆn+9
=3(an+2ˆn+3)
b(n+1)/bn
=3(an+2ˆn+3)/(an+2ˆn+3)
=3
所以是以3为公比的等比数列
b1=a1+2^1+3
=-2+2+3
=3
bn=b1*q^(n-1)
=3*3^(n-1)
=3^n
an+2^n+3=3^n
an=3^n-2^n-3
an/bn
=(3^n-2^n-3)/3^n
=3^n/3^n-2^n/3^n-3/3^n
=1-(2/3)^n-(1/3)^(n-1)
sn
=1-(2/3)^1-(1/3)^0+(2/3)^2-(1/3)^1+.+1-(2/3)^n-(1/3)^(n-1)
=1+1+1+.+1-(2/3)^1-(2/3)^2-.-(2/3)^n-(1/3)^0-(1/3)^1-.-(1/3)^(n-1)
=n-(2/3)*[1-(2/3)^n]/(1-2/3)-[1-(1/3)^n]/(1-1/3)
=n-2*[1-(2/3)^n]-3*[1-(1/3)^n]/2
=n-2+2*(2/3)^n-3/2+3*(1/3)^n/2
=2*(2/3)^n+(1/3)^(n-1)/2+n-5/2
看了 数列an中an+1=3an+...的网友还看了以下:
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
分式的加减m/m^2-n^2-n/m^2-n^2a^2/a^2-b^2-a^2/b^2+2ab/a 2020-05-13 …
1.公差不为零的等差数列的第2、3、6项构成等比数列,则公比为?2.二次方程a(n) x^2-a( 2020-05-13 …
已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1}.(Ⅰ)若M⊆N,求实数a的取值范围 2020-05-13 …
如:1+2+3+...+n=n(n+1)/2;a选b的组合数为(a(a-1)(a-2)...(a- 2020-05-14 …
用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1 2020-05-16 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
(证明自己数学实力)非常有挑战的数列极限即a(n)=sqrt(2+sqrt(2+sqrt(2+…s 2020-08-02 …
离散数学--阿克曼函数已知阿克曼函数A:N*N-->N的定义为:(1)A(0,n)=n+1,n>=0 2020-12-08 …
数列相邻四项间的递推问题已知数列{an}各项都是自然数,a1=0,a2=3,且a(n+1)+an=[ 2020-12-28 …