早教吧作业答案频道 -->数学-->
[2sin2x﹡(1-tanx)ˆ2]/[1+(tanx)ˆ2]的单调区间?
题目详情
[2sin2x﹡(1-tanx)ˆ2]/[1+(tanx)ˆ2]的单调区间?
▼优质解答
答案和解析
设f(x)=[2sin2x﹡(1-tanx)ˆ2]/[1+(tanx)ˆ2]=[2sin2x﹡(1-2tanx+(tanx)^2)]/[1+(tanx)^2]
=[2sin2x﹡(-2tanx)]/[1+(tanx)^2]+2sin2x=-4sin2x﹡tanx/(secx)^2+2sin2x
=-4sin2x﹡tanx﹡(cosx)^2+2sin2x=-2(sin2x)^2+2sin2x=-2(sin2x-1/2)^2+1/2,sin2x∈[-1,1].
设t=sin2x,g(t)=-2(t-1/2)^2+1/2,当t∈[-1,1/2]时,g(t)单调递增,当t∈[1/2,1]时,g(t)单调递减.
令sin2x∈[-1,1/2],则2x∈[2kπ-7π/6,2kπ+π/6],即x∈[kπ-7π/12,kπ+π/12],
令sin2x∈[1/2,1],则2x∈[2kπ+π/6,2kπ+5π/6],即x∈[kπ+π/12,kπ+5π/12],
sin2x的单调递增区间为[kπ-π/4,kπ+π/4],
sin2x的单调递减区间为[kπ+π/4,kπ+3π/4],
[kπ-7π/12,kπ-3π/12]包含于[kπ+π/4,kπ+3π/4],[kπ-3π/12,kπ+π/12]包含于[kπ-π/4,kπ+π/4],
[kπ+π/12,kπ+3π/12]包含于[kπ-π/4,kπ+π/4],[kπ+3π/12,kπ+5π/12]包含于[kπ+π/4,kπ+3π/4],
所以f(x)在[kπ-7π/12,kπ-3π/12]上单调递减,f(x)在[kπ-3π/12,kπ+π/12]上单调递增,
f(x)在[kπ+π/12,kπ+3π/12]上单调递减,f(x)在[kπ+3π/12,kπ+5π/12]上单调递增.
=[2sin2x﹡(-2tanx)]/[1+(tanx)^2]+2sin2x=-4sin2x﹡tanx/(secx)^2+2sin2x
=-4sin2x﹡tanx﹡(cosx)^2+2sin2x=-2(sin2x)^2+2sin2x=-2(sin2x-1/2)^2+1/2,sin2x∈[-1,1].
设t=sin2x,g(t)=-2(t-1/2)^2+1/2,当t∈[-1,1/2]时,g(t)单调递增,当t∈[1/2,1]时,g(t)单调递减.
令sin2x∈[-1,1/2],则2x∈[2kπ-7π/6,2kπ+π/6],即x∈[kπ-7π/12,kπ+π/12],
令sin2x∈[1/2,1],则2x∈[2kπ+π/6,2kπ+5π/6],即x∈[kπ+π/12,kπ+5π/12],
sin2x的单调递增区间为[kπ-π/4,kπ+π/4],
sin2x的单调递减区间为[kπ+π/4,kπ+3π/4],
[kπ-7π/12,kπ-3π/12]包含于[kπ+π/4,kπ+3π/4],[kπ-3π/12,kπ+π/12]包含于[kπ-π/4,kπ+π/4],
[kπ+π/12,kπ+3π/12]包含于[kπ-π/4,kπ+π/4],[kπ+3π/12,kπ+5π/12]包含于[kπ+π/4,kπ+3π/4],
所以f(x)在[kπ-7π/12,kπ-3π/12]上单调递减,f(x)在[kπ-3π/12,kπ+π/12]上单调递增,
f(x)在[kπ+π/12,kπ+3π/12]上单调递减,f(x)在[kπ+3π/12,kπ+5π/12]上单调递增.
看了 [2sin2x﹡(1-tan...的网友还看了以下:
设[x]表示不超过x的整数中最大的整数,如[1.97]=1,[-1.35]=-2,根据此规律计算:( 2020-03-30 …
解方程[解答时给出必要的演算过程或推理步骤](612:7:20)已知方程[X+1]/[X+2]+[X 2020-03-30 …
解方程[解答时必须给出必要的演算过程或推理步骤](523:17:23)已知方程[X+1]/[X+2 2020-04-07 …
等比数列的和的求证[1+(1+i)+(1+i)2+……+(1+i)n-2+(1+i)n-1]如何求 2020-06-12 …
假设函数f(x)在闭区间[0,1]上连续,并且对于[0,1]上任意一点x都有0≤f(x)≤1,试证 2020-06-23 …
拟定甲地到乙地通话m分钟的电话费f(m)=0.3×[m])(单位:元),其中m>0,[m]表示大于 2020-06-27 …
两道电工题,懂的告诉下,十分感激![1]电路中,R=30欧,L=127MH,C=4UF,U=220 2020-07-19 …
(理)如果f(x)在某个区间I内满足:对任意的x1、x2∈I都有[f(x1)+f(x2)]≥f() 2020-07-29 …
证函数y=(1/x)sin(1/x)在区间(0,1]内无界,但这函数不是x→0 2020-07-31 …
我刚才正要问你同一件事情英语I[]just[][]askyouthesamethin我刚才正要问你同 2020-11-16 …