早教吧作业答案频道 -->其他-->
(2012•惠州一模)如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求三棱锥D1-AB1C的体积.
题目详情

2 |
(1)求证:BM∥平面D1AC;
(2)求三棱锥D1-AB1C的体积.
▼优质解答
答案和解析
(Ⅰ)连接D1O,如图,
∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,
∴四边形D1OBM是平行四边形,
∴D1O∥BM.(2分)
∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC.(4分)
(Ⅱ)连接OB1,∵正方形ABCD的边长为2,BB1=
,
∴B1D1=2
,OB1=2,D1O=2,
则OB12+D1O2=B1D12,∴OB1⊥D1O.(6分)
又∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D,且BD∩D1D=D,
∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1,
∴AC⊥D1O,又AC∩OB1=O,(10分)
∴D1O⊥平面AB1C,即D1O为三棱锥D1-AB1C的高.(12分)
∵S△AB1C=
•AC•OB1=
×2
×2=2
,D1O=2
∴VD1−AB1C=
•S△AB1C•D1O=
×2
×2=

∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,
∴四边形D1OBM是平行四边形,
∴D1O∥BM.(2分)
∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC.(4分)
(Ⅱ)连接OB1,∵正方形ABCD的边长为2,BB1=
2 |
∴B1D1=2
2 |
则OB12+D1O2=B1D12,∴OB1⊥D1O.(6分)
又∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D,且BD∩D1D=D,
∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1,
∴AC⊥D1O,又AC∩OB1=O,(10分)
∴D1O⊥平面AB1C,即D1O为三棱锥D1-AB1C的高.(12分)
∵S△AB1C=
1 |
2 |
1 |
2 |
2 |
2 |
∴VD1−AB1C=
1 |
3 |
1 |
3 |
2 |
4 |
3 |
作业帮用户
2016-12-02
为您推荐:
广告
|
看了 (2012•惠州一模)如图所...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
二次函数f(x)=ax^2+bx+c的系数abc互不相等,若1/a,1/b,1/c成等差数列二次函 2020-05-16 …
不等式误区a,b,c都为正,a+b+c=1求1/a^2+1/b^2+1/c^2的最小值帮我看一下我 2020-06-06 …
A,B,C均可逆,ABC=I则B^(-1)=A.A^(-1)C^(-1)B.C^(-1)A^(-1 2020-06-11 …
已知1/a+1/b+1/c=1/(a+b+c)求证1/a的(2n+1)次方+1/b的(2n+1)次 2020-07-22 …
A(1,3).B(-3,1).C(-1,-4).D(5,-2).P(3,4)为平面直角坐标系内五个 2020-07-31 …
求一道数学题解(急)1/a+1/b+1/c=1/a+b+c,求证啊a+b=0或b+c=0或a+c=0 2020-11-05 …
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/ 2020-11-06 …
三个不等于零数的平方等于一a平方+b平方+c平方=1(abc不等于零)A(B/1+C/1)+B(C/ 2020-11-18 …
看看是什么三角形以知三角形ABC的三边分别为abc,且满足1/a-1/b+1/c=1/a-b+c试判 2020-12-25 …