早教吧作业答案频道 -->数学-->
如图,已知棱柱ABCD-A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F为棱AA1的中点,M为线段BD1的中点.(Ⅰ)求证:MF∥面ABCD;(Ⅱ)判断直线MF与平面BDD1B1的位置关系,并证明你
题目详情
如图,已知棱柱ABCD-A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F为棱AA1的中点,M为线段BD1的中点.

(Ⅰ)求证:MF∥面ABCD;
(Ⅱ)判断直线MF与平面BDD1B1的位置关系,并证明你的结论;
(Ⅲ)求三棱锥D1-BDF的体积.

(Ⅰ)求证:MF∥面ABCD;
(Ⅱ)判断直线MF与平面BDD1B1的位置关系,并证明你的结论;
(Ⅲ)求三棱锥D1-BDF的体积.
▼优质解答
答案和解析
(Ⅰ)连接AC、BD交于点O,再连接OM,
∵△BD1D中,OM是中位线,∴OM∥D1D且OM=
D1D,
∵矩形AA1D1D中,AF∥D1D且AF=
D1D,
∴AF∥OM且AF=OM,可得四边形MOAF是平行四边形,
∴MF∥OA,
∵MF⊈平面ABCD,OA⊆平面ABCD,
∴MF∥平面ABCD;------(4分)
(Ⅱ)AC⊥平面BDD1B1,证明如下
在底面菱形ABCD中,AC⊥BD,
又∵BB1⊥平面ABCD,AC⊆平面ABCD
∴AC⊥BB1,
∵BB1、BD是平面BDD1B1内的相交直线
∴AC⊥平面BDD1B1,
∵AC∥MF,∴MF⊥平面BDD1B1,------------(8分)
(Ⅲ)过点B作BH⊥AD,垂足为H,
∵AA1⊥平面ABCD,BH⊆平面ABCD
∴BH⊥AA1,
∵AD、AA1是平面BDD1B1内的相交直线
∴BH⊥平面BDD1B1,
在Rt△ABH中,∠DAB=60°,AB=1,
∴BH=ABsin60°=
,
因此,三棱锥D1-BDF的体积V=VB-D1DF=
S△DD1F•BH=
×
×1×1×
=
--------(12分)
(Ⅰ)连接AC、BD交于点O,再连接OM,∵△BD1D中,OM是中位线,∴OM∥D1D且OM=
| 1 |
| 2 |
∵矩形AA1D1D中,AF∥D1D且AF=
| 1 |
| 2 |
∴AF∥OM且AF=OM,可得四边形MOAF是平行四边形,
∴MF∥OA,
∵MF⊈平面ABCD,OA⊆平面ABCD,
∴MF∥平面ABCD;------(4分)
(Ⅱ)AC⊥平面BDD1B1,证明如下

在底面菱形ABCD中,AC⊥BD,
又∵BB1⊥平面ABCD,AC⊆平面ABCD
∴AC⊥BB1,
∵BB1、BD是平面BDD1B1内的相交直线
∴AC⊥平面BDD1B1,
∵AC∥MF,∴MF⊥平面BDD1B1,------------(8分)
(Ⅲ)过点B作BH⊥AD,垂足为H,
∵AA1⊥平面ABCD,BH⊆平面ABCD
∴BH⊥AA1,
∵AD、AA1是平面BDD1B1内的相交直线
∴BH⊥平面BDD1B1,
在Rt△ABH中,∠DAB=60°,AB=1,
∴BH=ABsin60°=
| ||
| 2 |
因此,三棱锥D1-BDF的体积V=VB-D1DF=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 12 |
看了 如图,已知棱柱ABCD-A1...的网友还看了以下:
数轴上点A对应的数是-1,B点对应的数是1,点A、B、C分别以1单位一秒,三单位一秒,四单位一秒在数 2020-03-30 …
数轴上点A对应的数是-1,B点对应的数是1,点A、B、C分别以1单位一秒,三单位一秒,四单位一秒在数 2020-03-30 …
已知,如图,圆D交Y轴于点A,B,交X轴的负半轴于点C,OD=1,过点C的直线Y=-2√2 X-8 2020-05-16 …
已知,如图,圆D交Y轴于点A,B,交X轴的负半轴于点C,OD=1,过点C的直线Y=-2√2 X-8 2020-05-16 …
阅读理若A、B、C为数轴上三点且点C在点A、点B之间,若点C到A的距离是点C到B的距离2倍,我们就 2020-07-14 …
阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是A,B的好 2020-07-30 …
阅读理若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是A,B的妙点. 2020-07-30 …
点A、B在数轴上表示的数分别为-12和16.(规定数轴上两点A、B之间的距离记为AB)(1)点C在 2020-08-03 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.(1)点C在数轴上,满足A 2020-11-19 …
在平面直角坐标系中,交A(1,0),点B(0,1),点C(-1,0),过点C的一条直线绕点C旋转,交 2020-12-25 …