早教吧作业答案频道 -->数学-->
如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E、B、F、D1四点共面(2)求证:平面A1GH∥平面BED1F.
题目详情
如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.

(1)求证:E、B、F、D1四点共面
(2)求证:平面A1GH∥平面BED1F.

(1)求证:E、B、F、D1四点共面
(2)求证:平面A1GH∥平面BED1F.
▼优质解答
答案和解析
证明:(1)如图:在DD1上取一点N使得DN=1,
连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面;
(2)因为H是B1C1的中点,所以B1H=
,
因为B1G=1,所以
=
,
因为
=
,且∠FCB=∠GB1H=90°,
所以△B1HG∽△CBF,
所以∠B1GH=∠CFB=∠FBG,
所以HG∥FB,
由(1)知,A1G∥BE且HG∩A1G=G,FB∩BE=B,
所以平面A1GH∥平面BED1F.

连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面;
(2)因为H是B1C1的中点,所以B1H=
3 |
2 |
因为B1G=1,所以
B1G |
B1H |
2 |
3 |
因为
FC |
BC |
2 |
3 |
所以△B1HG∽△CBF,
所以∠B1GH=∠CFB=∠FBG,
所以HG∥FB,
由(1)知,A1G∥BE且HG∩A1G=G,FB∩BE=B,
所以平面A1GH∥平面BED1F.
看了 如图所示,已知ABCD-A1...的网友还看了以下:
已知点(1,1/3)是函数f(x)=a^x图像上一点已知点(1,1/3)是函数f(x)=a^x(a 2020-06-12 …
在平面直角坐标系xoy中,抛物线y=ax2bxc过点(2,2),且当x=0时y取得最小值1在平面直 2020-06-17 …
已知点F(1,0)为椭圆C:x^2/a^2+y^2/b^2=1的右焦点,过点A(a,0)、B(0, 2020-06-21 …
几何线段证明题:已知:点C是线段AB上一点,且3AC=2AB,D是AB的中点,E是CB的中点,DE 2020-06-27 …
已知点A(1,2),AC平行于X轴,AC等于5则点C的坐标是?已知点A(1,2),AC平行于y轴, 2020-06-29 …
如图,已知直线y=-x-(k+1)与双曲线y=kx相交于B、C两点,与x轴相交于A点,BM⊥x轴交 2020-07-20 …
已知点A(1,0).点R在y轴上运动,T在x轴上,N为动点,已知点A(1,0).点R在y轴上运动, 2020-07-22 …
已知点A(-1,0),B(4,0),点C在y轴的正半轴上看问题补充最后一条!有第三题解即可(2012 2020-11-12 …
已知点P(1,−32)在椭圆C:x2a2+y2b2=1(a>b>0)上,椭圆C的左焦点为(-1,0) 2020-11-27 …
已知定点A(0,1),直线L1:y=-1交y轴于点B,记过点A且与直线L1相切的圆的圆心为点C.1) 2020-11-27 …