早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310

题目详情
已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为(  )
A.
3
17
2

B. 2
10

C.
13
2

D. 3
10
▼优质解答
答案和解析
因为三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,
所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1,经过球的球心,球的直径是其对角线的长,
因为AB=3,AC=4,BC=5,BC1=
52+122
=13,
所以球的半径为:
13
2

故选C.