早教吧作业答案频道 -->数学-->
已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.(1)求a2的值;(2)证明:对任意实数n∈N*,an≤2an+1;(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2-12n-1≤Sn<3.
题目详情
已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.
(1)求a2的值;
(2)证明:对任意实数n∈N*,an≤2an+1;
(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2-
≤Sn<3.
(1)求a2的值;
(2)证明:对任意实数n∈N*,an≤2an+1;
(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2-
| 1 |
| 2n-1 |
▼优质解答
答案和解析
(1)an2+an=3a2n+1+2an+1,a1=1,
即有a12+a1=3a22+2a2=2,
解得a2=
(负的舍去);
(2)证明:an2+an=3a2n+1+2an+1,
可得an2-4a2n+1+an-2an+1+4a2n+1=0,
即有(an-2an+1)(an+2an+1+1)+4a2n+1=0,
由于正项数列{an},
即有an+2an+1+1>0,4a2n+1>0,
则有对任意实数n∈N*,an≤2an+1;
(3)由(1)可得对任意实数n∈N*,an≤2an+1;
即为a1≤2a2,可得a2≥
,a3≥
a2≥
,
…,an≥
,
前n项和为Sn=a1+a2+…+an≥1+
+
+…+
=
=2-
,
又an2+an=3a2n+1+2an+1>a2n+1+an+1,
即有(an-an+1)(an+an+1+1)>0,
则an>an+1,数列{an}递减,
即有Sn=a1+a2+…+an<1+1+
+
+…+
=1+
=3(1-
)<3.
则有对任意n∈N*,2-
≤Sn<3.
即有a12+a1=3a22+2a2=2,
解得a2=
| ||
| 3 |
(2)证明:an2+an=3a2n+1+2an+1,
可得an2-4a2n+1+an-2an+1+4a2n+1=0,
即有(an-2an+1)(an+2an+1+1)+4a2n+1=0,
由于正项数列{an},
即有an+2an+1+1>0,4a2n+1>0,
则有对任意实数n∈N*,an≤2an+1;
(3)由(1)可得对任意实数n∈N*,an≤2an+1;
即为a1≤2a2,可得a2≥
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
…,an≥
| 1 |
| 2n-1 |
前n项和为Sn=a1+a2+…+an≥1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
=
1-
| ||
1-
|
| 1 |
| 2n-1 |
又an2+an=3a2n+1+2an+1>a2n+1+an+1,
即有(an-an+1)(an+an+1+1)>0,
则an>an+1,数列{an}递减,
即有Sn=a1+a2+…+an<1+1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
=1+
1-
| ||
1-
|
| 1 |
| 2n-1 |
则有对任意n∈N*,2-
| 1 |
| 2n-1 |
看了 已知正项数列{an}满足an...的网友还看了以下:
已知数列{an}是各项均不为0的等差数列,Sn是其前n项和,且满足S(2n-1)=an^2/2,n 2020-04-09 …
△ABC三边abc和面积满足S=c2-(a-b)2,且a+b=2△ABC的三边a,b,c和面积S满 2020-04-27 …
设数列{a左}的前左项和为S左,满足a左+S左=A左2+B左+1(A≠多).(1)若a1=32,a 2020-05-14 …
数列的通项a(n)的前几项和S(n)之间满足S(n)=2-3a(n)求a(n)与a(n-1)、s( 2020-06-03 …
设无穷等差数列{An}的前n项和为Sn(I)若首项a1=2/3,公差d=1,求满足"S(k的平方) 2020-08-02 …
设无穷等差数列的前n项和为Sn1若首项A1=3/2,公差d=1,求满足S下标:k的平方=(S下标: 2020-08-02 …
已知数列{a[n]}的前n项和为S[n],且满足a[n]+2S[n]×S[n-1]=0(n≥0),a 2020-11-01 …
一道数学题(数列)已知数列{a[n]}的前n项和为S[n],并且满足a[1]=2,na[n+1]=S 2020-12-05 …
非空集合S满足(1)S⊆{1,2,3,4,5……,2n+1},n∈N*(2)若a∈S,则有2n+2∈ 2020-12-07 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …