早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n(1)设bn=an/n,求数列{bn}的通项公式(2)求数列{an}的前n项和Sn
题目详情
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和Sn
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和Sn
▼优质解答
答案和解析
(1) ∵an+1=(1+1/n)an+(n+1)/2^n=(n+1)/n*an+(n+1)/2^n
∴an+1/(n+1)=an/n+1/2^n
∵bn=an/n,∴bn+1=bn+1/2^n
bn=bn-1+1/2^(n-1)
bn-1=bn-2+1/2^(n-2)
.
b2=b1+1/2^1
b1=a1/1=1
将上述n个式子加起来,得
bn=1+1/2+1/2^2+...+1/2^(n-1)
=1+1/2(1-(1/2)^(n-1))/(1-1/2)
=1+1-1/2^(n-1)
=2-1/2^(n-1)
(2) ∵bn=an/n,∴an=n*bn
∴Sn=1*b1+2*b2+...+n*bn
=1*(2-1)+2*(2-1/2)+3*(2-1/4)+...+n*(2-1/2^(n-1))
=2(1+2+3+...+n)-(1+2/2+3/4+...+n/2^(n-1))
=2Pn-Qn
设Pn=(1+2+3+...+n)=n(n+1)/2 Qn=(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))
对Qn,有 Qn/2=(1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n)
Qn-Qn/2=Qn/2=1+[1/2+1/2^2+1/2^3+...+1/2^(n-1)]+n/2^n
=1+1/2(1-(1/2)^(n-1))/(1-1/2)+n/2^n
=1+1-(1/2)^(n-1)+n/2^n
=2-1/2^(n-1)+n/2^n
=2+(n+2)/2^n
∴Qn=4+2(n+2)/2^n
∴Sn=2Pn-Qn
=2*n(n+1)/2-4-2(n+2)/2^n
=n(n+1)-4-2(n+2)/2^n
∴an+1/(n+1)=an/n+1/2^n
∵bn=an/n,∴bn+1=bn+1/2^n
bn=bn-1+1/2^(n-1)
bn-1=bn-2+1/2^(n-2)
.
b2=b1+1/2^1
b1=a1/1=1
将上述n个式子加起来,得
bn=1+1/2+1/2^2+...+1/2^(n-1)
=1+1/2(1-(1/2)^(n-1))/(1-1/2)
=1+1-1/2^(n-1)
=2-1/2^(n-1)
(2) ∵bn=an/n,∴an=n*bn
∴Sn=1*b1+2*b2+...+n*bn
=1*(2-1)+2*(2-1/2)+3*(2-1/4)+...+n*(2-1/2^(n-1))
=2(1+2+3+...+n)-(1+2/2+3/4+...+n/2^(n-1))
=2Pn-Qn
设Pn=(1+2+3+...+n)=n(n+1)/2 Qn=(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))
对Qn,有 Qn/2=(1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n)
Qn-Qn/2=Qn/2=1+[1/2+1/2^2+1/2^3+...+1/2^(n-1)]+n/2^n
=1+1/2(1-(1/2)^(n-1))/(1-1/2)+n/2^n
=1+1-(1/2)^(n-1)+n/2^n
=2-1/2^(n-1)+n/2^n
=2+(n+2)/2^n
∴Qn=4+2(n+2)/2^n
∴Sn=2Pn-Qn
=2*n(n+1)/2-4-2(n+2)/2^n
=n(n+1)-4-2(n+2)/2^n
看了 在数列{an}中,a1=1,...的网友还看了以下:
望会的老师和同学多多帮忙!谢谢!设数列{an}满足a1+3a2+9a3+...+3(n减一次方)an 2020-03-30 …
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
已知首项为32,公比不等于1的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S 2020-05-13 …
数列问题会的来不要去网上复制~网上没答案~已知点(1,2)是函数f(x)=a的x次方(a>0且a不 2020-05-13 …
已知{an}为等差数列,公差d≠0.{an}中一部分项组成的数列ak1,ak2,…,akn,…恰为 2020-05-17 …
已知数列{an}的首项a1=1,且满足an+1=an/2an+1.(1)求证数列{1/an}为等差 2020-05-17 …
数列{an}的前n项和Sn满足:Sn=n(n+3)/2(n属于N+)(1)设bn=2^n*an,求 2020-06-27 …
已知数列{an}中,a1=1/2,且a(n+1)=an/2+(2n+3)/2^(n+1),n为正整 2020-06-27 …
已知正项数列an中的前n项和为sn,且满足an^2+an-2sn=0(1)设bn=2^n*an,求 2020-07-14 …
已知数列an中,a1=1,a(n+1)=an/(an+3)(n属于N*)数列bn满足bn=(3^n 2020-07-21 …