早教吧作业答案频道 -->数学-->
已知函数f(x)=inx-a(x*X)-x,a属于R(1)若函数y=f(x)在其定义域内是单调增函数.求a的取值范围(2)设函数y=f(x)的图像被点P(2,f(2))分成的两部分为C1,C2(点P除外),该函数图象在点P处的切线为L且C1
题目详情
已知函数f(x)=inx-a(x*X)-x,a属于R
(1)若函数y=f(x)在其定义域内是单调增函数.求a的取值范围
(2)设函数y=f(x)的图像被点P(2,f(2))分成的两部分为C1,C2(点P除外),该函数图象在点P处的切线为L且C1、C2分别完全位于直线L的两侧,试求所有满足条件的a的值.
(1)若函数y=f(x)在其定义域内是单调增函数.求a的取值范围
(2)设函数y=f(x)的图像被点P(2,f(2))分成的两部分为C1,C2(点P除外),该函数图象在点P处的切线为L且C1、C2分别完全位于直线L的两侧,试求所有满足条件的a的值.
▼优质解答
答案和解析
(1)f(x)=lnx-ax^2-x,x>0,
f'(x)=1/x-2ax-1=-(2ax^2+x-1)/x>=0,
∴2ax^2+x-1<=0对x>0恒成立,
∴a<0,且1+8a<=0,
解得a<=-1/8.
(2)f(2)=ln2-4a-2,f'(2)=-(8a+1)/2,
切线L:y-(ln2-4a-2)=-(8a+1)(x-2)/2,即y=ln2-4a-2-(8a+1)(x-2)/2,
C1、C2分别完全位于直线L的两侧,
<==>g(x)=ln2-4a-2-(8a+1)(x-2)/2-f(x)在02都保号,且异号,
g'(x)=-(8a+1)/2-f'(x)=[4ax^2+(1-8a)x-2]/(2x)=(x-2)(4ax+1)/(2x)保号
∴4ax+1=4a(x-2),a=-1/8.
f'(x)=1/x-2ax-1=-(2ax^2+x-1)/x>=0,
∴2ax^2+x-1<=0对x>0恒成立,
∴a<0,且1+8a<=0,
解得a<=-1/8.
(2)f(2)=ln2-4a-2,f'(2)=-(8a+1)/2,
切线L:y-(ln2-4a-2)=-(8a+1)(x-2)/2,即y=ln2-4a-2-(8a+1)(x-2)/2,
C1、C2分别完全位于直线L的两侧,
<==>g(x)=ln2-4a-2-(8a+1)(x-2)/2-f(x)在0
g'(x)=-(8a+1)/2-f'(x)=[4ax^2+(1-8a)x-2]/(2x)=(x-2)(4ax+1)/(2x)保号
∴4ax+1=4a(x-2),a=-1/8.
看了 已知函数f(x)=inx-a...的网友还看了以下:
已知点P(x,y)是第一象限内的点,且在直线y=-x+8上,已知点P(x,y)是第一象限...已知 2020-05-14 …
已知方程x-y+2m=0和x+y=4的解为坐标的点P(x,y)一定不在()A、第一象限B、第二象限 2020-05-14 …
在代数学中,为了表述的简洁,常用记号f(x),g(x),P(x),……已知关于x的实系数多项式P( 2020-06-12 …
定义:在平面直角坐标系中,点P(x,y)的横纵坐标的绝对值的和叫做点P(x,y)的勾股值.记为[P 2020-06-14 …
已知点P(x,y)是第一象限内的点,且x+y=8,点A的坐标为(10,0).设△OAP的面积为S. 2020-07-18 …
1.已知一次函数y=x+m与反比例函数y=m+1/x(m≠-1)的图象在第一象限内的交点为p(x, 2020-07-22 …
这东西怎么填?3.平面内点的坐标特征(1)各象限内点的坐标特征点P(x,y)在第一象限⇔;点P(x 2020-07-31 …
点p(x,y)的横、纵坐标x、y满足xy<0且x>y则点(-1,m²+1)一定在A第一象限B第二象 2020-08-01 …
平面直角坐标系若点P(x,y)在x轴上方,|x|=5,|y|=4,则P点的坐标为点P(x,y),若x 2020-11-01 …
已知,点P(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,设△OPA的面积为S.小题 2020-11-01 …