早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•乐山)如图(1),在直角△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).试探究线段EF与EG的数量关系.(1)如图(2)

题目详情
(2011•乐山)如图(1),在直角△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).试探究线段EF与EG的数量关系.

(1)如图(2),当m=1,n=1时,EF与EG的数量关系是______.证明:
(2)如图(3),当m=1,n为任意实数时,EF与EG的数量关系是
EF=
1
n
EG
EF=
1
n
EG
.证明:
(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是
EF=
1
mn
EG
EF=
1
mn
EG
.(写出关系式,不必证明)
▼优质解答
答案和解析
证明:(1)如图1,连接DE,
∵AC=mBC,CD⊥AB,当m=1,n=1时
∴AD=BD,∠ACD=45°,
∴CD=AD=
1
2
AB,
∵AE=nEC,
∴DE=AE=EC=
1
2
AC,
∴∠EDC=45°,DE⊥AC,
∵∠A=45°,
∴∠A=∠EDG,
∵EF⊥BE,
∴∠AEF+∠FED=∠FED+∠DEG=90°,
∴∠AEF=∠DEG,
∴△AEF≌△DEG(ASA),
∴EF=EG.

(2)EF=
1
n
EG,
证明:如图2,作EM⊥AB于点M,EN⊥CD于点N,
∵EM∥CD,
∴△AEM∽△ACD,
EM
CD
AE
AC
=
1
n+1

即EM=
1
n+1
CD,
∵EN∥AD,
∴△CEN∽△CAD,
EN
AD
CE
AC
=
n
n+1

∴EN=
n
n+1
AD,
∵∠ACB=90°,CD⊥AB,
∴∠ACB=∠ADC=90°,
又∵∠A=∠A,
∴△ACD∽△ABC,
CD
AD
=
BC
AC
=1,
EM
EN
=1×
1
n
=
1
n

又∵EM⊥AB,EN⊥CD,
∴∠EMF=∠ENG=90°,
∵EF⊥BE,
∴∠FEM=∠GEN,
∴△EFM∽△EGN,
EF
EG
=
EM
EN
=
1
n

即EF=
1
n
EG;

(3)证明:如图2,作EM⊥AB于点M,EN⊥CD于点N,
∵EM∥CD,
∴△AEM∽△ACD,
EM
CD
AE
AC
=
1
n+1

即EM=
1
n+1
CD,
∵EN∥AD,
∴△CEN∽△CAD,
EN
AD
CE
AC
=
n
n+1

∴EN=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号
看了 (2011•乐山)如图(1)...的网友还看了以下: