早教吧作业答案频道 -->其他-->
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.(Ⅰ)当BE=1,是否在折叠后的AD上存在一点P,且AP=λPD,使
题目详情
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.

(Ⅰ)当BE=1,是否在折叠后的AD上存在一点P,且
=λ
,使得CP∥平面ABEF?若存在,求出λ的值;若不存在,说明理由;
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

(Ⅰ)当BE=1,是否在折叠后的AD上存在一点P,且
| AP |
| PD |
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
▼优质解答
答案和解析
(Ⅰ) 若存在P,使得CP∥平面ABEF,此时λ=
:
证明:当λ=
,此时
=
,可得
=
,
过P作MP∥FD,与AF交M,
则
=
,
又PD=5,故MP=3,
∵EC=3,MP∥FD∥EC,
∴MP∥EC,且MP=EC,故四边形MPCE为平行四边形,
∴PC∥ME,
∵CP⊄平面ABEF,ME⊂平面ABEF,
故答案为:CP∥平面ABEF成立.
(Ⅱ)∵平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,
∴AF⊥平面EFDC,
∵BE=x,∴AF=x,(0<x<4),FD=6-x,
故三棱锥A-CDF的体积V=
×
×2×(6−x)x=
[−(x−3)2+9]=−
(x−3)2+3,
∴x=3时,三棱锥A-CDF的体积V有最大值,最大值为3.
| 3 |
| 2 |
证明:当λ=
| 3 |
| 2 |
| AP |
| 3 |
| 2 |
| PD |
| AP |
| AD |
| 3 |
| 5 |
过P作MP∥FD,与AF交M,
则
| MP |
| FD |
| 3 |
| 5 |

又PD=5,故MP=3,
∵EC=3,MP∥FD∥EC,
∴MP∥EC,且MP=EC,故四边形MPCE为平行四边形,
∴PC∥ME,
∵CP⊄平面ABEF,ME⊂平面ABEF,
故答案为:CP∥平面ABEF成立.
(Ⅱ)∵平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,
∴AF⊥平面EFDC,
∵BE=x,∴AF=x,(0<x<4),FD=6-x,
故三棱锥A-CDF的体积V=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴x=3时,三棱锥A-CDF的体积V有最大值,最大值为3.
看了 如图,四边形ABCD中,AB...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“ 2020-05-14 …
1、设ABCD为自然数,且a^2+b^2=c^2+d^2,证:a+b+c+d为合数2、若在三角形中 2020-05-14 …
(a-b)(b-c)(c-a)等于什么,有公式吗a^2c-a^2b+ab^2-cb^2+bc^2- 2020-06-12 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
A、B、C是初中化学常见的物质,A是某种具有吸附性的物质的主要成分,B、C都是氧化物,通常为无色气体 2020-11-05 …
100%收购公司其中一名法人股东涉及到的问题事实:A.B.C.D为四个法人。A.B公司为C公司的股东 2020-11-06 …
如图是某区域的电场线分布.A、B、C是电场中的三个点,下列说法正确的是()A.三点中B点场强最强,C 2020-11-24 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
如果有A、B、C、D、E、F六种生物,其中A、C同属不同种,B、C同科不同属,C、D同目不同科,B、 2020-12-21 …