早教吧作业答案频道 -->数学-->
已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的
题目详情
已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.
(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;
(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.

(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;
(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.

▼优质解答
答案和解析
证明:(1)①如图1,
∵AB⊥AD,AE⊥AC,
∴∠BAD=90°,∠CAE=90°,
∴∠1=∠2,
在△ABC和△ADE中,
∵
∴△ABC≌△ADE(SAS);
②如图1,
∵△ABC≌△ADE,
∴∠AEC=∠3,
在Rt△ACE中,∠ACE+∠AEC=90°,
∴∠BCE=90°,
∵AH⊥CD,AE=AC,
∴CH=HE,
∵∠AHE=∠BCE=90°,
∴BC∥FH,
∴
=
=1,
∴BF=EF;
(2)结论仍然成立,理由是:
如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,
∵∠CAE=90°,∠BAD=90°,
∴∠1+∠2=90°,∠1+∠CAD=90°,
∴∠2=∠CAD,
∵MN∥AH,
∴∠3=∠HAE,
∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,
∴∠ACH=∠HAE,
∴∠3=∠ACH,
在△MAE和△DAC中,
∵
∴△MAE≌△DAC(ASA),
∴AM=AD,
∵AB=AD,
∴AB=AM,
∵AF∥ME,
∴
=
=1,
∴BF=EF.

∵AB⊥AD,AE⊥AC,
∴∠BAD=90°,∠CAE=90°,
∴∠1=∠2,
在△ABC和△ADE中,
∵
|
∴△ABC≌△ADE(SAS);
②如图1,
∵△ABC≌△ADE,
∴∠AEC=∠3,
在Rt△ACE中,∠ACE+∠AEC=90°,

∴∠BCE=90°,
∵AH⊥CD,AE=AC,
∴CH=HE,
∵∠AHE=∠BCE=90°,
∴BC∥FH,
∴
BF |
FE |
CH |
HE |
∴BF=EF;
(2)结论仍然成立,理由是:
如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,
∵∠CAE=90°,∠BAD=90°,
∴∠1+∠2=90°,∠1+∠CAD=90°,
∴∠2=∠CAD,
∵MN∥AH,
∴∠3=∠HAE,
∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,
∴∠ACH=∠HAE,
∴∠3=∠ACH,
在△MAE和△DAC中,
∵
|
∴△MAE≌△DAC(ASA),
∴AM=AD,
∵AB=AD,
∴AB=AM,
∵AF∥ME,
∴
BF |
EF |
AB |
AM |
∴BF=EF.
看了 已知四边形ABCD中,AB=...的网友还看了以下:
如果实方阵a满足aat=ata=i 则称a为正交矩阵 设a b为同阶正交矩阵 证明:at是正交矩阵 2020-04-05 …
关于矩阵,已知A为n阶可逆矩阵(n>=2),交换A的第1.2列得B,A*为A的伴随矩阵,则A.交换 2020-04-13 …
概率题,设p(A)=x,p(B)=y且p(A交B)=z,求p(A的逆交B). 2020-05-23 …
79、停用备用电源自投装置时应().(A)先停交流,后停直流;(B)先停直流,后停交流;(C)交直 2020-06-08 …
设A=3-2-23试利用A的正交相似对角化,求¢(A)=A10-5A9. 2020-06-16 …
天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共1 2020-06-23 …
坐等知道A的逆交B的逆和(A交B)的逆还有A的逆并B的逆与(A并B)的逆是怎样的? 2020-07-21 …
设A与B的交集为空集,M={X|X属于A},N={Y|Y属于B},则A.M与N的交集为空集B.M与 2020-07-30 …
双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为M,左顶点为A,以F是为圆心过点A的圆交双 2020-07-30 …
下面是A股票在五月某一交易日价格变化情况.(1)一天中,A股票交易最高价格是多少元?最低是多少元? 2020-08-03 …