早教吧作业答案频道 -->其他-->
如图,在正方形ABCD中,E是AB上的任意一点,F是边BC延长线上的一点,EF交边CD于点G,AE=CF.(1)求证:点D在线段EF的垂直平分线上;(2)如果EF交正方形的对角线BD于点P,BP=BE,求证:EP=FG
题目详情

(1)求证:点D在线段EF的垂直平分线上;
(2)如果EF交正方形的对角线BD于点P,BP=BE,求证:EP=FG.
▼优质解答
答案和解析
证明:(1)连接ED和DF,
∵四边形ABCD是正方形,
∴AD=DC,∠A=∠DCF=90°,
在△AED和△DCF中,
,
∴△AED≌△DCF(SAS),
∴ED=DF,
∴△EDF为直角三角形,D为其顶点,EF为底边
∴点D在线段EF的垂直平分线上;
(2)∵△EDF为等腰三角形
∴∠DEP=∠DFG,
∵BP=BE,
∴∠BEF=∠BPE,
∵∠BPE=∠DPG,
∴∠BEF=∠BPE,
∴∠BEP和∠CGF同位角,
∴∠BEP=∠CGF,
∴∠BEP和∠CGF,
∠CGF=∠DGE,
∴∠BEP=∠DGE,
∴∠EPD=∠DGF,
∴∠EDP=∠GDF,
∴∠BEP=∠DGE,
∴△EDP≌△FDG,
∴EP=FG.
∵四边形ABCD是正方形,
∴AD=DC,∠A=∠DCF=90°,
在△AED和△DCF中,
|
∴△AED≌△DCF(SAS),
∴ED=DF,
∴△EDF为直角三角形,D为其顶点,EF为底边
∴点D在线段EF的垂直平分线上;
(2)∵△EDF为等腰三角形
∴∠DEP=∠DFG,
∵BP=BE,
∴∠BEF=∠BPE,
∵∠BPE=∠DPG,
∴∠BEF=∠BPE,
∴∠BEP和∠CGF同位角,
∴∠BEP=∠CGF,
∴∠BEP和∠CGF,
∠CGF=∠DGE,
∴∠BEP=∠DGE,
∴∠EPD=∠DGF,
∴∠EDP=∠GDF,
∴∠BEP=∠DGE,
∴△EDP≌△FDG,
∴EP=FG.
看了 如图,在正方形ABCD中,E...的网友还看了以下:
点B,F,C,E在同一直线上,AC,DF相交于点G,AB垂直BE,垂足为B,DE垂直BE,垂足为E 2020-04-26 …
,点B,F,C,E在同一直线上,AC,DF相交于点G,AB垂直BE,垂足为B,DE垂直BE,垂足为 2020-04-26 …
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
已知两垂直平面a,b,交线为AB,直线c属于a,直线d属于b.若c,d都不垂直与AB,求证:c,d 2020-05-13 …
几何证明垂直问题已知直角三角形CAB 角A是直角AF垂直CB于FBD平分角B交AC于D 交AF于G 2020-05-13 …
如图,B,F,C,E在同一直线上,AC,DF相交与点G,AB垂直BE于B,DE垂直BE于E,且AB 2020-06-02 …
已知平面a,b,r满足a垂直r,b垂直r,a交b=r,求证:l垂直r急 2020-06-15 …
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4根号3,E为BC的中点 2020-06-27 …
已知面a,b,r,满足a垂直于r,b垂直于r,a交b=l,求证:l垂直于r已知面a,b,r,满足a 2020-07-12 …