早教吧作业答案频道 -->数学-->
已知x/(y+z)+y/(x+z)+z/(x+y)=1求x2/(y+z)+y2/(x+z)+z2/(x+y)的值
题目详情
已知x/(y+z)+y/(x+z)+z/(x+y)=1求x2/(y+z)+y2/(x+z)+z2/(x+y)的值
▼优质解答
答案和解析
等于0.
x/(y+z)=1-[y/(z+x)+z/(x+y)]
y/(z+x)=1-[x/(y+z)+z/(x+y)]
z/(x+y)=1-[x/(y+z)+y/(z+x)]
x2/(y+z)+y2/(z+x)+z2/(x+y)
=x*[x/(y+z)]+y*[y/(z+x)]+z*[z/(x+y)]
=x*{1-[y/(z+x)+z/(x+y)]}+y*{1-[x/(y+z)+z/(x+y)]}+z*{1-[x/ (y+z)+y/(z+x)]}
=x-x*[y/(z+x)+z/(x+y)]+y-y*[x/(y+z)+z/(x+y)]+z-z*[x/(y+z)+y/(z+x)]
=x+y+z-[xy/(z+x)+xz/(x+y)+yx/(y+z)+yz/(x+y)+zx/(y+z)+zy/(z+x)]
=x+y+z-[xy/(z+x)+zy/(z+x)+yx/(y+z)+zx/(y+z)+xz/(x+y)+yz/(x+y)]
=x+y+z-[y(x+z)/(z+x)+x(y+z)/(y+z)+z(x+y)/(x+y)]
=x+y+z-(y+x+z)
=0
x/(y+z)=1-[y/(z+x)+z/(x+y)]
y/(z+x)=1-[x/(y+z)+z/(x+y)]
z/(x+y)=1-[x/(y+z)+y/(z+x)]
x2/(y+z)+y2/(z+x)+z2/(x+y)
=x*[x/(y+z)]+y*[y/(z+x)]+z*[z/(x+y)]
=x*{1-[y/(z+x)+z/(x+y)]}+y*{1-[x/(y+z)+z/(x+y)]}+z*{1-[x/ (y+z)+y/(z+x)]}
=x-x*[y/(z+x)+z/(x+y)]+y-y*[x/(y+z)+z/(x+y)]+z-z*[x/(y+z)+y/(z+x)]
=x+y+z-[xy/(z+x)+xz/(x+y)+yx/(y+z)+yz/(x+y)+zx/(y+z)+zy/(z+x)]
=x+y+z-[xy/(z+x)+zy/(z+x)+yx/(y+z)+zx/(y+z)+xz/(x+y)+yz/(x+y)]
=x+y+z-[y(x+z)/(z+x)+x(y+z)/(y+z)+z(x+y)/(x+y)]
=x+y+z-(y+x+z)
=0
看了 已知x/(y+z)+y/(x...的网友还看了以下:
x/(y+z+u)=y/(z+u+x)=z/(u+y+x)=u(x+y+z)求(x+y)/(z+u 2020-05-21 …
若xyz≠0,且满足(y+z)/x=(x+z)/y=(x+y)/z,求[(y+z)(x+z)(x+ 2020-06-06 …
六年级三元一次方程1.解方程组6(x+y)=2(x+z)=3(y-z),x+y+z=5.2.已知x 2020-07-17 …
急求教 已知数X+Y=216,X+Z=152,Y-Z=64,W-Z=216,W-Y=152,W+ 2020-07-18 …
xyz不等于0x+y+z不等于0,(y+z)/x=(z+x)/y=(x+y)/z求(y+z)(z+x 2020-10-31 …
一.若分式(4x+8)/(x^2-4)为整数,求x的整数值二.若x/2=y/3=z/4,求(x^2+ 2020-10-31 …
已知1=xy/(x+y),2=yz/(y+z),3=xz/(x+z),求x+y+z的值.已知A/(x 2020-11-01 …
已知xyz不等于0,x+y+z不等于0,且(y+z)/x=(z+x)/y=(x+y)/z,求(y+z 2020-11-01 …
设z=z(x,y)是由f(x-z,y-z)=0确定的隐函数,其中f有二阶连续偏导数,且f1′+f2′ 2020-11-01 …
整式的运算数学题!若(x+z)²-4(x-y)(y-z)=0,试求x+z与y的关系1、若(x+z)² 2020-11-15 …