早教吧作业答案频道 -->数学-->
在三角形ABC中,已知AC=2,AB=1,且角A、B、C满足cos2A+2sin^2(B+C/2)=1.急在三角形ABC中,已知AC=2,AB=1,且角A、B、C满足cos2A+2sin^2(B+C/2)=1,(I)求角A大小和BC边长(II)若点P是线段AC上的动点,设点P到边AB、BC的距离
题目详情
在三角形ABC中,已知AC=2,AB=1,且角A、B、C满足cos2A+2sin^2(B+C/2)=1.急
在三角形ABC中,已知AC=2,AB=1,且角A、B、C满足cos2A+2sin^2(B+C/2)=1,
(I)求角A大小和BC边长
(II)若点P是线段AC上的动点,设点P到边AB、BC的距离分别是x,y,试求xy最大值,并指出P点位于何处时xy最大.
在三角形ABC中,已知AC=2,AB=1,且角A、B、C满足cos2A+2sin^2(B+C/2)=1,
(I)求角A大小和BC边长
(II)若点P是线段AC上的动点,设点P到边AB、BC的距离分别是x,y,试求xy最大值,并指出P点位于何处时xy最大.
▼优质解答
答案和解析
(Ⅰ)cos2A+2sin²[(B+C)/2]=1 → 1-2sin²A+2sin²[(B+C)/2]=1 → sinA=sin[(B+C)/2] → A=(B+C)/2;
∴ 3A=180° → A=60°;
由余弦定理:BC²=AC²+AB²-2AC*AB*cosA=2²+1²-2*2*1*cos60°=3,∴ BC=√3;△ABC为RT△;
(Ⅱ)由题意得:(x/sinA)+(y/sinC)=AC;
将 sinA=sin60°=√3/2、sinC=1/2 代入得:(2x/√3)+2y=2,即 y=1-x√3/3;
∴ xy=x*[1-(x√3/3)]=x-(x²√3/3)=-√3/3[x-(√3/2)]²+(3/4);
xy 最大值:3/4(当 x=√3/2=BC/2,由RT△可得出:PA=PC,即P位于AC边的中点时);
∴ 3A=180° → A=60°;
由余弦定理:BC²=AC²+AB²-2AC*AB*cosA=2²+1²-2*2*1*cos60°=3,∴ BC=√3;△ABC为RT△;
(Ⅱ)由题意得:(x/sinA)+(y/sinC)=AC;
将 sinA=sin60°=√3/2、sinC=1/2 代入得:(2x/√3)+2y=2,即 y=1-x√3/3;
∴ xy=x*[1-(x√3/3)]=x-(x²√3/3)=-√3/3[x-(√3/2)]²+(3/4);
xy 最大值:3/4(当 x=√3/2=BC/2,由RT△可得出:PA=PC,即P位于AC边的中点时);
看了 在三角形ABC中,已知AC=...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
若a加b分之a减b等于三,求代数式a加b分之2(a减b)减3(a减b)分之4(a加b)的值 请尽快 2020-05-16 …
已知椭圆x^2+2y^2=12,A是x轴正半轴的一定点已知椭圆x^2+2y^2=12,A是x轴正半 2020-06-29 …
判断以下对应是否为从集合A到B的映射,并说明理由.(1)A={平面内的圆},B={平面内的三角形} 2020-07-30 …
设x3+ax+b=0,其中a,b均为实数.下列条件中不能使得该三次方程仅有一个实根的是()A.a=- 2020-10-31 …
当a>1时,取a=2,则2>1/2,取a=3/2,则3/2>2/3……所以,a>1/a.当0<a<1 2020-11-28 …
对于题目“化简并求值:1/a+根号1/a的平方;+a的平方-2,其中a=1/5",甲,乙两人的解答不 2020-11-29 …
一电荷量为Q的点电荷激发的电场中A点,一试探电荷,所带电荷量为q,在该点受到的电场力为F,则()A. 2020-12-27 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …