早教吧作业答案频道 -->数学-->
418×814×1616≡2×8×4≡64≡12(mod13)不是a≡b(modm)吗,418×814×1616≡2×8×4?不理解为什么这样写为什么不写成418×814×1616≡2×8×4(mod13)418×814×1616≡64(mod13)=12(mod13)
题目详情
418×814×1616≡2×8×4≡64≡12(mod13)
不是a≡b(modm)吗,418×814×1616≡2×8×4?不理解为什么这样写
为什么不写成418×814×1616≡2×8×4(mod13)
418×814×1616≡ 64(mod13)=12(mod13)
不是a≡b(modm)吗,418×814×1616≡2×8×4?不理解为什么这样写
为什么不写成418×814×1616≡2×8×4(mod13)
418×814×1616≡ 64(mod13)=12(mod13)
▼优质解答
答案和解析
题目转述:
试解释同余式为什么写成下面的形式.
418×814×1616≡2×8×4≡64≡12(mod13)
答:
为打字方便,以下用双等号代替三线等号.即用==表示同余号≡
同余的性质:
性质0
a=b,则对于任意模m,有 a==b mod m
性质1
a==b mod m,则b==a mod m.
性质2
a=A mod m,b=B mod m,则a*b=A*B mod m
性质3
a==b mod m,b==c mod m,则a==c mod m.也可以直接写成a==b==c mod m.
下面我们来解释原题中提到的例子.
因为
418==28==2 mod 13
814==34==8 mod 13
1616==316==56==4 mod 13
(以上3行用到性质3)
故
418*814*1616==2*8*4 (此处用到性质2),
接着写 = 64 或 ==64都行 (这里是乘法运算结果或性质0)
剩下就好说了.
于是原式可写成
418*814*1616==2*8*4=64==12 mod 13
或
418*814*1616==2*8*4==64==12 mod 13
这里的mod 13只写一次,其中涉及到的模 一直都是13,故中间均作了省略.
写成
418*814*1616 mod 13==2*8*4 mod 13=64 mod 13==12 mod 13
更严格,只是我们约定省去了相同的项罢了.
外一则:
事实上,mod m 实际就是相当于一个代数和项附加到连等号的各个平行加项之上,并且可以附加到至少一个、至多所有加项的意思.
例如 x==1 mod 2,相当于 x=1 +2t
相当于 x+2a =1+2b
注意这里的加号实际是代数和,因为并不规定整数a,b的符号,并且加号也可以改成减号而不影响实质;并且加法可以具有交换性与结合性.
因此,我提议将x==1 mod 2形式地写成x==1 ,这样会用更简洁的形式表现出同余概念的最本质的内容.
x==1,同时也是x==1,同时也是x==1,也是x==1,也是
x==1,x=1,x==1,x=1,
总之相当于一个2的任意倍数,与==两侧的一个或多个平行加项作任意的加减结合,而不影响运算的本质.
外一则:不提倡使用[2],{2}因为常用来表示取整函数和取非整数部分;不使用(),因为太常用了.提倡使用尖括号,在不与比较符号相混淆的情况下使用.或者,还可使用新的其他符号,注意匹配呼应即可.
外一则:
1+2t,
当t=2n时即是1+4t;
当1=2n+1时即时3+4t
故
1==1或3
试解释同余式为什么写成下面的形式.
418×814×1616≡2×8×4≡64≡12(mod13)
答:
为打字方便,以下用双等号代替三线等号.即用==表示同余号≡
同余的性质:
性质0
a=b,则对于任意模m,有 a==b mod m
性质1
a==b mod m,则b==a mod m.
性质2
a=A mod m,b=B mod m,则a*b=A*B mod m
性质3
a==b mod m,b==c mod m,则a==c mod m.也可以直接写成a==b==c mod m.
下面我们来解释原题中提到的例子.
因为
418==28==2 mod 13
814==34==8 mod 13
1616==316==56==4 mod 13
(以上3行用到性质3)
故
418*814*1616==2*8*4 (此处用到性质2),
接着写 = 64 或 ==64都行 (这里是乘法运算结果或性质0)
剩下就好说了.
于是原式可写成
418*814*1616==2*8*4=64==12 mod 13
或
418*814*1616==2*8*4==64==12 mod 13
这里的mod 13只写一次,其中涉及到的模 一直都是13,故中间均作了省略.
写成
418*814*1616 mod 13==2*8*4 mod 13=64 mod 13==12 mod 13
更严格,只是我们约定省去了相同的项罢了.
外一则:
事实上,mod m 实际就是相当于一个代数和项附加到连等号的各个平行加项之上,并且可以附加到至少一个、至多所有加项的意思.
例如 x==1 mod 2,相当于 x=1 +2t
相当于 x+2a =1+2b
注意这里的加号实际是代数和,因为并不规定整数a,b的符号,并且加号也可以改成减号而不影响实质;并且加法可以具有交换性与结合性.
因此,我提议将x==1 mod 2形式地写成x==1 ,这样会用更简洁的形式表现出同余概念的最本质的内容.
x==1,同时也是x==1,同时也是x==1,也是x==1,也是
x==1,x=1,x==1,x=1,
总之相当于一个2的任意倍数,与==两侧的一个或多个平行加项作任意的加减结合,而不影响运算的本质.
外一则:不提倡使用[2],{2}因为常用来表示取整函数和取非整数部分;不使用(),因为太常用了.提倡使用尖括号,在不与比较符号相混淆的情况下使用.或者,还可使用新的其他符号,注意匹配呼应即可.
外一则:
1+2t,
当t=2n时即是1+4t;
当1=2n+1时即时3+4t
故
1==1或3
看了 418×814×1616≡2...的网友还看了以下:
口算.510÷10=510÷100=5.1×10=5.1×100=0.12×6=7.8÷3=0.6 2020-04-07 …
六年级分数混合运算35道不要1.3/7×49/9-4/32.8/9×15/36+1/273.12× 2020-04-08 …
多项式插值法求102=8/(1+y)+8/(1+y)^2+8/(1+y)^3+8/(1+y)^4+ 2020-05-15 …
1.底面面积是7.8平方米,高是1.8米.求圆锥圆锥的体积=1/3*底面积*高=1/3*7.8*1 2020-05-21 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
1+1/1*3+1/2*3+1/2*5+1/3*5+1/3*7+1/4*7+1/4*9原式=2*[ 2020-06-11 …
0.39+1/5+39/100+4/5=1/2-(5/6-3/8)=8/19-6/19+1/107 2020-07-17 …
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2 2020-07-17 …
1.3/7×49/9-4/32.8/9×15/36+1/273.12×5/6–2/9×34.8×5 2020-07-19 …
英语翻译一:A=imread('图像.bmp');I=double(A);[m,n]=size(I) 2020-11-01 …