早教吧作业答案频道 -->数学-->
问题情境徐老师给爱好学习的小敏和小捷提出这样一个问题:如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…小捷的
题目详情
【问题情境】
徐老师给爱好学习的小敏和小捷提出这样一个问题:
如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC
小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE. 可以证得:AE=DE(如图3)…
请你任意选择一种思路继续完成下一步的证明.
【变式探究】
“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变.(如图4),AB+BD=AC成立吗?若成立,请证明;若不成立,写出你的正确结论,并说明理由.
【迁移拓展】
△ABC中,∠B=2∠C. 求证:AC2=AB2+AB•BC. (如图5)
徐老师给爱好学习的小敏和小捷提出这样一个问题:
如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC
小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE. 可以证得:AE=DE(如图3)…
请你任意选择一种思路继续完成下一步的证明.
【变式探究】
“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变.(如图4),AB+BD=AC成立吗?若成立,请证明;若不成立,写出你的正确结论,并说明理由.
【迁移拓展】
△ABC中,∠B=2∠C. 求证:AC2=AB2+AB•BC. (如图5)

▼优质解答
答案和解析
【问题情境】小敏的证明思路是:如图2,在AC上截取AE=AB,连接DE.(如图2)
∵AD是∠BAC的平分线,
∴∠BAD=∠EAD.
在△ABD和△AED中,
,
∴△ABD≌△AED(SAS),
∴BD=DE,∠ABD=∠AED
∵∠AED=∠EDC+∠C,∠B=2∠C,
∴∠EDC=∠C,
∴DE=EC,
即AB+BD=AC;
小捷的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.
∴∠E=∠BAE.
∵∠ABC=∠E+∠BAE,
∴∠ABC=2∠E.
∵∠ABC=2∠C,
∴∠E=∠C,
∴△AEC是等腰三角形.
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC.
∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE
∴∠ADE=∠DAE,
∴EA=ED=AC,
∴AB+BD=AC;
【变式探究】
AB+BD=AC不成立 正确结论:AB+BD=CD…(5分)
理由:如图4,在CD上截取DE=DB,连结AE,
∵AD⊥BC,
∴AD是BE的中垂线,
∴AE=AB,
∴∠B=∠AED.
∵∠AED=∠C+∠CAE,且∠B=2∠C,
∴∠C=∠CAE,
∴AE=EC.
即AB+BD=CD;
【迁移拓展】
证明:如图5,过点A作AD⊥BC于D.由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,
∴AC2-AB2=CD2-BD2=(CD+BD)(CD-BD)=BC(CD-BD)
∵AB+BD=CD,
∴CD-BD=AB,
∴AC2-AB2=BC(CD-BD)=BC•AB,
即AC2=AB2+AB•BC.
∵AD是∠BAC的平分线,
∴∠BAD=∠EAD.
在△ABD和△AED中,
|
∴△ABD≌△AED(SAS),
∴BD=DE,∠ABD=∠AED

∵∠AED=∠EDC+∠C,∠B=2∠C,
∴∠EDC=∠C,
∴DE=EC,
即AB+BD=AC;
小捷的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.
∴∠E=∠BAE.
∵∠ABC=∠E+∠BAE,
∴∠ABC=2∠E.
∵∠ABC=2∠C,
∴∠E=∠C,
∴△AEC是等腰三角形.
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC.
∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE
∴∠ADE=∠DAE,
∴EA=ED=AC,
∴AB+BD=AC;
【变式探究】
AB+BD=AC不成立 正确结论:AB+BD=CD…(5分)
理由:如图4,在CD上截取DE=DB,连结AE,
∵AD⊥BC,
∴AD是BE的中垂线,
∴AE=AB,
∴∠B=∠AED.
∵∠AED=∠C+∠CAE,且∠B=2∠C,
∴∠C=∠CAE,
∴AE=EC.
即AB+BD=CD;
【迁移拓展】
证明:如图5,过点A作AD⊥BC于D.由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,
∴AC2-AB2=CD2-BD2=(CD+BD)(CD-BD)=BC(CD-BD)
∵AB+BD=CD,
∴CD-BD=AB,
∴AC2-AB2=BC(CD-BD)=BC•AB,
即AC2=AB2+AB•BC.
看了 问题情境徐老师给爱好学习的小...的网友还看了以下:
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
求教分析一道代数式值题的解答过程.题目是这样的:已知(b+c)/a=(a+c)/b=(a+b)/c 2020-05-20 …
C获取数字声音时首先需要对模拟声音信号进行取样。对频带宽度达20kHz的音乐取样时,为了不产生失真 2020-05-24 …
定积分计算问题我想知道那个黑色笔写的1怎么来的,我知道∫e^xdx=e^x+c,那么这里的1相当于 2020-06-27 …
a(b-c)^5+b(c-a)^5+c(a-b)^5分解为(a-b)(b-c)(c-a)L(aa( 2020-07-09 …
在三角形ABC中,如果AB边上的高与AB边的长相等,则AC/BC+BC/AC+AB^2/BC*AC 2020-07-22 …
绝对值不等式,求证|a+b+c|≤|a|+|b|+|c|这个过程清楚点,我知道答案就是不明白怎么来 2020-08-03 …
一尺之棰,日取半截,万世不竭——初三物理我国古代思想家庄子曾经说过:“一尺之棰,日取半截,万世不竭。 2020-11-07 …
有人说,“向社会索取的不能带走,留给社会的可能永存。”这句话表明A.社会存在决定社会意识B.人只能对 2020-12-22 …
有人说,“向社会索取的不能带走,留给社会的可能永存”这句话表明A.社会存在决定社会意识B.人只能对社 2020-12-22 …