早教吧作业答案频道 -->数学-->
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.
题目详情
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.

(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:四边形ABFE是菱形.

(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:四边形ABFE是菱形.
▼优质解答
答案和解析
(1)证明:∵ABC绕点A按逆时针方向旋转100°,
∴∠BAC=∠DAE=40°,
∴∠BAD=∠CAE=100°,
又∵AB=AC,
∴AB=AC=AD=AE,
在△ABD与△ACE中
∴△ABD≌△ACE(SAS).
(2) ∵∠CAE=100°,AC=AE,
∴∠ACE=
(180°-∠CAE)=
(180°-100°)=40°;
(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°-∠BAE-∠ABD-∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.
∴∠BAC=∠DAE=40°,
∴∠BAD=∠CAE=100°,
又∵AB=AC,
∴AB=AC=AD=AE,
在△ABD与△ACE中
|
∴△ABD≌△ACE(SAS).
(2) ∵∠CAE=100°,AC=AE,
∴∠ACE=
1 |
2 |
1 |
2 |
(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°-∠BAE-∠ABD-∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.
看了 如图,△ABC中,AB=AC...的网友还看了以下:
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
三角函数一道.等答b=10,A=45°,C=70°此三角形为什么没有两解?原题:A.b=10,A= 2020-05-23 …
速求:ac(a+c)(a-c)+ba(b+a)(b-a)+cb(c+b)(c-b)怎样化为a^3( 2020-06-03 …
A为3维行向量,B为3维列向量,A,B满足A*B=2,则矩阵B*A的非零特征值为答案的解法是设C= 2020-06-20 …
下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b∥c,则a∥cC.若a 2020-07-21 …
化简的题1.B∠A∠0∠1∠C("∠"为小于符号)|A|=|B|化简|A|÷A+|B|÷B+|C| 2020-08-01 …
下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b∥c,则a∥cC.若a⊥ 2020-11-02 …
求线性代数设A、B、C为n阶方阵,则下列结论正确的是A.︱A+B+C︱=︱A︱+︱B︱+︱C︱B.( 2020-11-18 …
[a^3(c-b)+b^3(a-c)+c^3(b-a)]/[a^2(c-b)+b^2(a-c)+c^ 2020-12-22 …
已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()A.a=b,b=aB.a=c,b=a,c 2020-12-31 …