早教吧作业答案频道 -->数学-->
若直角坐标系内A,B两点满足:(1)点A,B都在f(x)的图象上;(2)点A,B关于原点对称,则称点对(A,B)是函数f(x)的一个“姊妹点对”,点对(A,B)与(B,A)可看作一个“姊妹点
题目详情
若直角坐标系内A,B两点满足:(1)点A,B都在f(x)的图象上;
(2)点A,B关于原点对称,则称点对(A,B)是函数f(x)的一个“姊妹点对”,点对(A,B)与(B,A)可看作一个“姊妹点对”,已知函数f(x)=
,则f(x)的“姊妹点对”有___个.
(2)点A,B关于原点对称,则称点对(A,B)是函数f(x)的一个“姊妹点对”,点对(A,B)与(B,A)可看作一个“姊妹点对”,已知函数f(x)=
|
|
▼优质解答
答案和解析
设P(x,y) (x<0),则点P关于原点的对称点为P′(-x,-y),
于是
=-(x2+2x),化为2ex+x2+2x=0,
令φ(x)=2ex+x2+2x,下面证明方程φ(x)=0有两解.
由x2+2x≤0,解得-2≤x≤0,而
>0(x≥0),∴只要考虑x∈[-2,0]即可.
求导φ′(x)=2ex+2x+2,
令g(x)=2ex+2x+2,则g′(x)=2ex+2>0,
∴φ′(x)在区间[-2,0]上单调递增,
而φ′(-2)=2e-2-4+2<0,φ′(-1)=2e-1>0,
∴φ(x)在区间(-2,0)上只存在一个极值点x0.
而φ(-2)=2e-2>0,φ(-1)=2e-1-1<0,φ(0)=2>0,
∴函数φ(x)在区间(-2,-1),(-1,0)分别各有一个零点.
也就是说f(x)的“姊妹点对”有2个.
故答案为:2.
于是
2 |
e-x |
令φ(x)=2ex+x2+2x,下面证明方程φ(x)=0有两解.
由x2+2x≤0,解得-2≤x≤0,而
2 |
ex |
求导φ′(x)=2ex+2x+2,
令g(x)=2ex+2x+2,则g′(x)=2ex+2>0,
∴φ′(x)在区间[-2,0]上单调递增,
而φ′(-2)=2e-2-4+2<0,φ′(-1)=2e-1>0,
∴φ(x)在区间(-2,0)上只存在一个极值点x0.
而φ(-2)=2e-2>0,φ(-1)=2e-1-1<0,φ(0)=2>0,
∴函数φ(x)在区间(-2,-1),(-1,0)分别各有一个零点.
也就是说f(x)的“姊妹点对”有2个.
故答案为:2.
看了 若直角坐标系内A,B两点满足...的网友还看了以下:
回答下列问题.(1)图中A、C两点的经纬度坐标分别为:A;C.(2)A点位于D点的方向.C点位于B 2020-04-09 …
已知(如图所示)A(3,2),B(3,4),C(-4,-2),D(2,-2),(1)A与B是对称点 2020-05-02 …
数学题,如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)如图,抛物 2020-05-13 …
如图,在平面直角坐标系中,直线y=4/3x+4与x轴交于点A,与y轴交于点B,点C为y轴上一动点( 2020-05-16 …
若在直角坐标平面内A,B两点满足条件:①点A,B都在函数y=f(x)的图象上;②点A,B关于原点对 2020-06-14 …
1.已知:A(2,0),|AB|=4,B点和A点在同一数轴上,求B点坐标.已知:A(0,0),|A 2020-06-14 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
若直角坐标系内A,B两点满足:(1)点A,B都在f(x)的图象上;(2)点A,B关于原点对称,则称 2020-07-03 …
已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C 2020-07-25 …
以A点后视点,以B点为架站点,测量C,D点.得出坐标,再以D点为架站点,A点为后视点,测量B,C点, 2021-01-02 …