早教吧作业答案频道 -->数学-->
已知圆C:x^2+y^2=r^2(r>0)经过点(1,根号3)(1)求圆得直线方程(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同的点,且满足向量MO=二分之一倍向量OA+二分之根号下3倍向量OB(O为坐标
题目详情
已知圆C:x^2+y^2=r^2(r>0)经过点(1,根号3)
(1)求圆得直线方程
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同的点,且满足向量MO=二分之一倍向量OA+二分之根号下3倍向量OB(O为坐标原点)关系得点M也在圆C上,如果存在,求出直线方程;如果不存在,请说明理由
(1)求圆得直线方程
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同的点,且满足向量MO=二分之一倍向量OA+二分之根号下3倍向量OB(O为坐标原点)关系得点M也在圆C上,如果存在,求出直线方程;如果不存在,请说明理由
▼优质解答
答案和解析
(1)由圆C:x2+y2=r2,再由点(1,)在圆C上,得r2=12+()2=4
所以圆C的方程为
x2+y2=4;
(2)假设直线l存在,
设A(x1,y1),B(x2,y2),
M(x0,y0)
①若直线l的斜率存在,设直线l的方程为:
y-1=k(x+1),
联立消去y得,
(1+k2)x2+2k(k+1)x+k2+2k-3=0,
由韦达定理得x1+x2=-=-2+,
x1x2==1+,
y1y2=k2x1x2+k(k+1)(x1+x2)+(k+1)2=-3,
因为点A(x1,y1),B(x2,y2)在圆C上,
因此,得x12+y12=4,
x22+y22=4,
由=+得x0=,y0=,
由于点M也在圆C上,
则=4,
整理得,+3+x1x2+y1y2=4,
即x1x2+y1y2=0,所以1++(-3)=0,
从而得,k2-2k+1=0,即k=1,因此,直线l的方程为
y-1=x+1,即x-y+2=0,
②若直线l的斜率不存在,
则A(-1,),B(-1,-),M;
+=4-≠4,
故点M不在圆上与题设矛盾
综上所知:k=1,直线方程为x-y+2=0
所以圆C的方程为
x2+y2=4;
(2)假设直线l存在,
设A(x1,y1),B(x2,y2),
M(x0,y0)
①若直线l的斜率存在,设直线l的方程为:
y-1=k(x+1),
联立消去y得,
(1+k2)x2+2k(k+1)x+k2+2k-3=0,
由韦达定理得x1+x2=-=-2+,
x1x2==1+,
y1y2=k2x1x2+k(k+1)(x1+x2)+(k+1)2=-3,
因为点A(x1,y1),B(x2,y2)在圆C上,
因此,得x12+y12=4,
x22+y22=4,
由=+得x0=,y0=,
由于点M也在圆C上,
则=4,
整理得,+3+x1x2+y1y2=4,
即x1x2+y1y2=0,所以1++(-3)=0,
从而得,k2-2k+1=0,即k=1,因此,直线l的方程为
y-1=x+1,即x-y+2=0,
②若直线l的斜率不存在,
则A(-1,),B(-1,-),M;
+=4-≠4,
故点M不在圆上与题设矛盾
综上所知:k=1,直线方程为x-y+2=0
看了 已知圆C:x^2+y^2=r...的网友还看了以下:
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
求解一个6阶的方阵R,满足条件:R*R'=diag(1,1,1,1,1,1)并且[0.0535,0 2020-06-22 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
设有下面四个命题p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3: 2020-07-20 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
为什么有些函数不能积分,求大侠帮忙算一下看能不能积?(R^2-x^2)^(1/2)*(r^2-x^ 2020-08-02 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …
若函数f(x)的定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.例如: 2020-12-17 …