早教吧 育儿知识 作业答案 考试题库 百科 知识分享

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上

题目详情
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A,B,C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1,a2,a3,并求出an
(2)记bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);(其中
 
1≤i≤j≤n
bibj表示所有的积bibj(1≤i≤j≤n)的和)
(3)证明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
3
16
+
3
16
1
2n
(n∈N*).
▼优质解答
答案和解析
(1)a1=1,a2=3,a3=7,事实上,要将n个圆盘全部转移到C柱上,只需先将上面n-1个圆盘转移到B柱上,需要an-1次转移,然后将最大的那个圆盘转移到C柱上,需要一次转移,再将B柱上的n-1个圆盘转移到C柱上,需要an-1次...