早教吧作业答案频道 -->其他-->
已知椭圆C的中心在原点,焦点在坐标轴上,短轴的一个端点B(0,4),离心率e=0.6.(1)求椭圆C的方程;(2)若O(0,0),P(2,2),试探究在椭圆C内部是否存在整点Q(平面内横、纵坐
题目详情
已知椭圆C的中心在原点,焦点在坐标轴上,短轴的一个端点B(0,4),离心率e=0.6.
(1)求椭圆C的方程;
(2)若O(0,0),P(2,2),试探究在椭圆C内部是否存在整点Q(平面内横、纵坐标都是整数的点为整点),使得△OPQ的面积S△OPQ=4?若存在,请指出共有几个这样的点(不必具体求出这些点的坐标);否则,说明理由.
(1)求椭圆C的方程;
(2)若O(0,0),P(2,2),试探究在椭圆C内部是否存在整点Q(平面内横、纵坐标都是整数的点为整点),使得△OPQ的面积S△OPQ=4?若存在,请指出共有几个这样的点(不必具体求出这些点的坐标);否则,说明理由.
▼优质解答
答案和解析
(1)设椭圆C的方程为
+
=1(a>b>0),…(1分)
依题意得,b=4,
=
,又a2=b2+c2,…(3分)
∴a=5,b=4,c=3,…(4分)
所以椭圆C的方程为
+
=1.…(5分)
(2)依题意得,|OP|=2
,直线OP的方程为 y=x,…(6分)
因为S△OPQ=4,点Q到直线OP的距离为2
,…(7分)
所以点Q在与直线OP平行且距离为2
的直线l上,…(8分)
设l:y=x+m,则
=2
解得m=±4,…(10分)
当m=4时,由
,消元得41x2+200x<0,即−
<x<0,x∈Z,∴x=-4,-3,-2,-1,相应的y也是整数,
此时满足条件的点Q有4个,…(13分)
当m=-4时,由对称性,同理也得满足条件的点Q有4个.
综上,存在满足条件的点Q,这样的点有8个.…(14分)
x2 |
a2 |
y2 |
b2 |
依题意得,b=4,
c |
a |
3 |
5 |
∴a=5,b=4,c=3,…(4分)
所以椭圆C的方程为
x2 |
25 |
y2 |
16 |
(2)依题意得,|OP|=2
2 |
因为S△OPQ=4,点Q到直线OP的距离为2
2 |
所以点Q在与直线OP平行且距离为2
2 |
设l:y=x+m,则
|m| | ||
|
2 |
当m=4时,由
|
200 |
41 |
此时满足条件的点Q有4个,…(13分)
当m=-4时,由对称性,同理也得满足条件的点Q有4个.
综上,存在满足条件的点Q,这样的点有8个.…(14分)
看了 已知椭圆C的中心在原点,焦点...的网友还看了以下:
椭圆x^2/10+y^2=1的左右焦点分别为F1,F2.点P在椭圆上,若P,F1,F2,是一个直角三 2020-03-30 …
1.直线x+2y+1=0与抛物线(y^2)=4x的交点个数为?2.两平行直线2x-4y+5=0与x 2020-04-27 …
以下命题正确的有.①到两个定点距离的和等于定长的点的轨迹是椭圆;②“若,则或”的逆否命题是“若且, 2020-05-13 …
椭圆x^2/9+y^2/2=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4则|PF1+PF2 2020-05-13 …
给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆”,若椭圆C的一个焦点为,其短轴上的一个 2020-06-18 …
已知椭圆C的中心在原点,右准线为x=3√2,离心率为√6/3.若直线y=t(t>0)与椭圆C交于不 2020-06-21 …
已知数轴上点A、B表示的数分别为-1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距 2020-07-22 …
7、有一个变量异号的二次齐次方程是三维空间的()A:单叶双曲面B:椭圆锥面C:双叶双曲面D:椭球面 2020-07-30 …
下列四个命题:①“∀x∈R,2x+5>0”是全称命题;②命题“∀x∈R,x2+5x=6”的否定是“ 2020-08-01 …
已知直线x+2y-6=0与圆cx^2+y^2-x-8y+m=0相交于A,B两点,是否存在三角形OAB 2020-10-31 …