如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。(1)求椭圆的离心率;(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆
如图,A,B,C是椭圆M:
上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。
(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
分 析:
(1)有条件列出C点坐标是解题关键:因为过椭圆的中心,所以,又,所以是以角为直角的等腰直角三角形,则所以,则,(2)本题关键为表示出△ABC的外接圆方程:的外接圆直径为AB 所以易得的外接圆为:,由垂径定理得即,所以椭圆方程为.试题
解析:
(1)因为过椭圆的中心,所以,又,所以是以角为直角的等腰直角三角形, 3分则,所以,则,所以; 7分(2)的外接圆圆心为中点,半径为,则的外接圆为: 10分令,或,所以,得,(也可以由垂径定理得得)所以所求的椭圆方程为. 15分
考点:
椭圆方程,椭圆离心率 考点
分析:
考点1:椭圆的标准方程 考点2:椭圆的几何性质 试题属性 题型: 难度: 考核: 年级
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4,(Ⅰ) 2020-05-14 …
椭圆x2/a2椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1、F2,过F 2020-05-15 …
已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为 2020-05-15 …
设椭圆E:x²/a²+y²/1-a²=1的焦点在x轴上若椭圆E的焦距为1设椭圆E:x²/a²+设椭 2020-05-15 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)F1、F2分别为椭圆的左右焦点,A为椭圆的 2020-05-15 …
请问:如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆 2020-07-21 …
已知点p(4,4),椭圆Ex^2/18+y^2/2=1椭圆上点A(3,1)F1,F2分别是椭圆的左 2020-07-25 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程x=9/根号5,且该椭圆上的 2020-07-31 …
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆上的点 2020-08-01 …