早教吧作业答案频道 -->其他-->
(2014•浦东新区二模)(文)已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为77|OB|.(1)求椭圆C的方程;(2)过P(3,0)的直线l交椭圆C于R、S
题目详情

| ||
7 |
(1)求椭圆C的方程;
(2)过P(3,0)的直线l交椭圆C于R、S两点,交直线x=1于Q点,若|PQ|是|PR|、|PS|的等比中项,求直线l的方程;
(3)圆D以椭圆C的两焦点为直径,圆D的任意一条切线m交椭圆C于两点M、N,试求弦长|MN|的取值范围.
▼优质解答
答案和解析
(1)设椭圆C方程为:
+
=1(a>b>0)
∴直线AB方程为:
+
=1…1分
∴F1(-1,0)到直线AB距离为d=
=
b,
∴a2+b2=7(a-1)2…2分
又b2=a2-1,解得:a=2,b=
…3分
故:椭圆C方程为:
+
=1.…4分
(2)当直线l与x轴重合时,|PQ|=2,而|PR|•|PS|=1×5=5,∴|PQ|2≠|PR|•|PS|
故可设直线l方程为:x=my+3,…5分
代人椭圆C的方程,得:3(my+3)2+4y2=12,即:(3m2+4)y2+18my+15=0
∴△=(18m)2-4×15(3m2+4)=48(3m2-5)
记R(x1,y1),S(x2,y2),Q(x0,y0),
∴y1y2=
,y0=−
…7分
∵|PQ|2=|PR|•|PS|,即
=
⇒
=
x2 |
a2 |
y2 |
b2 |
∴直线AB方程为:
x |
−a |
y |
b |
∴F1(-1,0)到直线AB距离为d=
|b−ab| | ||
|
| ||
7 |
∴a2+b2=7(a-1)2…2分
又b2=a2-1,解得:a=2,b=
3 |
故:椭圆C方程为:
x2 |
4 |
y2 |
3 |
(2)当直线l与x轴重合时,|PQ|=2,而|PR|•|PS|=1×5=5,∴|PQ|2≠|PR|•|PS|
故可设直线l方程为:x=my+3,…5分
代人椭圆C的方程,得:3(my+3)2+4y2=12,即:(3m2+4)y2+18my+15=0
∴△=(18m)2-4×15(3m2+4)=48(3m2-5)
记R(x1,y1),S(x2,y2),Q(x0,y0),
∴y1y2=
15 |
3m2+4 |
2 |
m |
∵|PQ|2=|PR|•|PS|,即
|PR| |
|PQ| |
|PQ| |
|PS| |
y1 |
y0 |
看了 (2014•浦东新区二模)(...的网友还看了以下:
关于数学椭圆准线点M到两焦点的距离之和为定值的点的轨迹是椭圆还是点M到定点和定直线的距离比为定值的 2020-04-27 …
已知圆(x+1)^2+y^2=8的圆心F,设点A为圆上任意一点,N(1,0),线段AN的垂直平分线 2020-06-15 …
已知圆F的方程是,抛物线的顶点在原点,焦点是圆心F,过F引倾斜角为的直线l,l与抛物线和圆依次交于 2020-07-12 …
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的 2020-07-26 …
已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直 2020-07-26 …
椭圆X2/4+Y2/3=1上有一动点,圆E:(x-i)^2+y^2=1,过圆心E任意做一条直线与圆 2020-07-26 …
椭圆X2/4+Y2/3=1上有一动点,圆E:(x-i)^2+y^2=1,过圆心E任意做一条直线与圆 2020-07-26 …
已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.(Ⅰ)求动圆M的圆心轨迹C 2020-07-31 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …
如图,圆K与圆F内切圆于点B,圆K的直径BC=6,圆F的直径BE=4,圆K的弦BA交圆F于点D.求 2020-08-01 …