早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,
题目详情
如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中
的长为___.

![]() |
P2017O2018 |

▼优质解答
答案和解析
连接P1O1,P2O2,P3O3…

∵P1 是⊙O2上的点,
∴P1O1=OO1,
∵直线l解析式为y=x,
∴∠P1OO1=45°,
∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,
同理,PnOn垂直于x轴,
∴
为
圆的周长,
∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,
∴OOn=2n-1,
∴
=
•2π•OOn=
π•2n-1=2n-2π,
当n=2017时,
=22015π.
故答案为 22015π.

∵P1 是⊙O2上的点,
∴P1O1=OO1,
∵直线l解析式为y=x,
∴∠P1OO1=45°,
∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,
同理,PnOn垂直于x轴,
∴
![]() |
PnOn+1 |
1 |
4 |
∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,
∴OOn=2n-1,
∴
![]() |
PnOn+1 |
1 |
4 |
1 |
2 |
当n=2017时,
![]() |
P2017O2018 |
故答案为 22015π.
看了 如图,在平面直角坐标系中,直...的网友还看了以下:
如图,已知直线l:y=√3/3x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线 2020-05-13 …
如图 已知 直线l∶y=-√3x÷3+√3交x轴于点A 交y轴于点B 将△AOB沿直线l翻折 点如 2020-05-16 …
在xy平面,直线L过原点O,和点A,A不等于O.取一点P,过P点做L的垂线和L相交于Q点,如果P点 2020-05-16 …
如图,在△ABC中,AD是中线,O为AD上的中点,直线l过o点,过A,B,C三点分别作直线L的垂线 2020-06-22 …
麻烦提供一下具体思路.已知直线L过点P(2,0),斜率为4/3,直线L和抛麻烦提供一下具体思路.已 2020-07-13 …
已知动圆过定点(1,0),且与直线x=-1相切(1)求动圆的圆心轨迹C的方程(2)是否存在直线l, 2020-07-25 …
平面直角坐标系xoy中,y轴上有一点A(0,1),在x轴上任取一点P,过点P作PA垂线l(1)若l 2020-07-29 …
(2014•江苏模拟)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A在抛物线C上, 2020-07-31 …
直线l过点P(2,3)和x轴,y轴正方向分别相交于A、B两点,求直线l在两坐线l过点P(2,3)和 2020-07-31 …
已知直线y=√3x-6√3与x轴,y轴分别相交于A,B两点,点C在射线BA上以每秒3个单位的速度运动 2021-01-10 …