早教吧作业答案频道 -->数学-->
已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛
题目详情
已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)抛物线的对称轴是x=-2,∵点A,B一定关于对称轴对称,
∴另一个交点为B(-3,0).
(2)∵A,B的坐标分别是(-1,0),(-3,0),∴AB=2,
∵对称轴为x=-2,∴CD=4;
设梯形的高是h.
∵S梯形ABCD=
×(2+4)h=9,
∴h=3,即|-t|=3,
∴t=±3,
当t=3时,把(-1,0)代入解析式得到a-4a+3=0,,解得a=1,
当t=-3时,把(-1,0)代入解析式得到a=-1,
∴a=1或a=-1,
∴解析式为y=x2+4x+3或y=-x2-4x-3;
(3)由题意得,E在y=-
x上,且在x=-2右侧,与抛物线y=x2+4x+3联立可得x2+
x+3=0,∴x=-6或x=-
∵E与点A在此抛物线对称轴的同侧,∴E(-
,
).
A关于对称轴的对称点B(-3,0),连接B与E交对称轴于点P,
∵BE的方程为
=
,即y=
x+
,
∴x=-2时,y=
,即P(-2,
).
y=-
x与y=-x2-4x-3联立可得x2+
x+3=0,此方程无解
综上知,抛物线的对称轴上存在点P(-2,
),使△APE的周长最小.
∴另一个交点为B(-3,0).
(2)∵A,B的坐标分别是(-1,0),(-3,0),∴AB=2,
∵对称轴为x=-2,∴CD=4;
设梯形的高是h.
∵S梯形ABCD=
1 |
2 |
∴h=3,即|-t|=3,
∴t=±3,
当t=3时,把(-1,0)代入解析式得到a-4a+3=0,,解得a=1,
当t=-3时,把(-1,0)代入解析式得到a=-1,
∴a=1或a=-1,
∴解析式为y=x2+4x+3或y=-x2-4x-3;
(3)由题意得,E在y=-
5 |
2 |
13 |
2 |
1 |
2 |
∵E与点A在此抛物线对称轴的同侧,∴E(-
1 |
2 |
5 |
4 |
A关于对称轴的对称点B(-3,0),连接B与E交对称轴于点P,
∵BE的方程为
y−0 | ||
|
x+3 | ||
−
|
1 |
2 |
3 |
2 |
∴x=-2时,y=
1 |
2 |
1 |
2 |
y=-
5 |
2 |
3 |
2 |
综上知,抛物线的对称轴上存在点P(-2,
1 |
2 |
看了 已知:抛物线y=ax2+4a...的网友还看了以下:
如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛 2020-05-16 …
有一动点p,在x轴上运动,在时间t的速度为v(t)=8t-2t^2,解下列各小题1.P从原点出发, 2020-05-20 …
已知抛物线y2=2px(p>0),过点Q(4,0)作动直线l交抛物线于A,B两点,且OA⊥OB(O 2020-06-12 …
如图,P是抛物线y=2(x-2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于 2020-06-13 …
如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛 2020-07-10 …
过M(-1,0)做抛物线C:y2=2px(p>0)的两条切线,切点分别为A,B.若.MA•.MB= 2020-07-31 …
已知:抛物线y=-x²/3+x+6和直线y=2x-7/4,若将该抛物线平移后,他的顶点恰好在直线y 2020-08-03 …
(2003•绵阳)若点P(t,t)在抛物线上,则点P叫做抛物线的不动点.设抛物线y=ax2+x+2经 2020-11-12 …
已知抛物线cy22px设抛物线上一点p的横坐标为t过p的直线交c与另一点已知抛物线C:y=x^2上一 2020-11-27 …
下列关于免疫的叙述,正确的是()A.致敏T细胞没有特异性B.巨噬细胞吞噬外来细菌,必须有抗体参与C. 2020-12-05 …