早教吧作业答案频道 -->数学-->
解非线性方程已知非线性方程y''+p(x)y'+q(x)y=f(x),有个3个特解y1=x,y2=e的x次方,y3=e的2x次方,求非线性方程在初始条件y(o)=0,y'(1)=3的特解?
题目详情
解非线性方程
已知非线性方程y''+p(x)y'+q(x)y=f(x),有个3个特解y1=x,y2=e的x次方,y3=e的2x次方,求非线性方程在初始条件y(o)=0,y'(1)=3的特解?
已知非线性方程y''+p(x)y'+q(x)y=f(x),有个3个特解y1=x,y2=e的x次方,y3=e的2x次方,求非线性方程在初始条件y(o)=0,y'(1)=3的特解?
▼优质解答
答案和解析
由方程y''+p(x)y'+q(x)y=f(x)---------(1),有个3个特解y1=x,y2=e^x,y3=e^2x
得齐次方程y''+p(x)y'+q(x)y=0----------------(2)的两个特解y11=y2-y1=e^x-x,y22=y3-y1=e^2x-x.
这两个特解线性无关因此可作为齐次方程(2)的通解的基,即y''+p(x)y'+q(x)y=0的通解为:
y=k1(e^x-x)+k2(e^2x-x),k1,k2为任意常数.
方程(1)通解为方程(2)的通解加上方程(1)的任意一个特解.
所以方程(1)通解为y=k1(e^x-x)+k2(e^2x-x)+x---------------------(3) ;
y'=k1(e^x-1)+k2(2e^2x-1)+1------------------------------------(4);
将(3),(4)式分别代入y(0)=0,y'(1)=3的初始条件:
0=k1(1-0)+k2(1-0)+0
3=k1(e^1-1)+k2(2e^2-1)+1
k1=-2/(2e^2-e)
k2=2/(2e^2-e)
把k1,k2带入(3)式,得所以要求的特解为:
y=-2(e^x-x)/(2e^2-e)+2(e^2x-x)/(2e^2-e)+x;
得齐次方程y''+p(x)y'+q(x)y=0----------------(2)的两个特解y11=y2-y1=e^x-x,y22=y3-y1=e^2x-x.
这两个特解线性无关因此可作为齐次方程(2)的通解的基,即y''+p(x)y'+q(x)y=0的通解为:
y=k1(e^x-x)+k2(e^2x-x),k1,k2为任意常数.
方程(1)通解为方程(2)的通解加上方程(1)的任意一个特解.
所以方程(1)通解为y=k1(e^x-x)+k2(e^2x-x)+x---------------------(3) ;
y'=k1(e^x-1)+k2(2e^2x-1)+1------------------------------------(4);
将(3),(4)式分别代入y(0)=0,y'(1)=3的初始条件:
0=k1(1-0)+k2(1-0)+0
3=k1(e^1-1)+k2(2e^2-1)+1
k1=-2/(2e^2-e)
k2=2/(2e^2-e)
把k1,k2带入(3)式,得所以要求的特解为:
y=-2(e^x-x)/(2e^2-e)+2(e^2x-x)/(2e^2-e)+x;
看了 解非线性方程已知非线性方程y...的网友还看了以下:
在二阶的常系数非齐次线性微分方程y""+py"+qy=f(x)中,记特征方程为λ^2+pλ+... 2020-05-13 …
matlab中怎么求解多元非线性方程组,请高手给一个例子,和全部的求解命令,比如:u2=x^2*y 2020-05-16 …
计算 ∮[(x-y)dx+(x+y)dy]/(x^2+y^2),其中L是曲线 |x|+|y|=2, 2020-05-16 …
关于“一阶线性微分方程”概念理解的两个问题1、为何把形如y'+P(x)y=0和y'+P(x)y=Q 2020-05-16 …
线性规划数学题:实数x,y满足x-y+1≤0,x>0,y≤2,若实数x,y满足x-y+1≤0,x> 2020-05-16 …
3(x-y)2方-7(x+y)+8(x-y)2方+6(x+y).懂的人教我下啦,我们没学过,假期作 2020-05-21 …
求助关于二阶常系数非齐次线性微分方程求特解形式问题关于二阶常系数非齐次线性微分方程求特解y*形式的 2020-07-31 …
关于二阶常系数非齐次线性微分方程求特解y*形式的题目我非常的混乱.1;问题一:何时使用y*=y*1 2020-07-31 …
1.若9x+12y=12x+10y=54,则x=?y=?2.方程4x+y=20的所有正整数解为()3 2020-10-31 …
已知(x^2+y^2-2)(x^2+y^2)=3,则x^2+y^2=.方程ax(x-b)+(b-x) 2020-11-01 …