早教吧作业答案频道 -->数学-->
三角函数6个诱导公式的推导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈zcot(2k
题目详情
三角函数6个诱导公式的推导
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα k∈z
cos(π+α)=-cosα k∈z
tan(π+α)=tanα k∈z
cot(π+α)=cotα k∈z
公式三:任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
这些公式的推导,尽量用数学知识来推导,少用文字描述
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα k∈z
cos(π+α)=-cosα k∈z
tan(π+α)=tanα k∈z
cot(π+α)=cotα k∈z
公式三:任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
这些公式的推导,尽量用数学知识来推导,少用文字描述
▼优质解答
答案和解析
这是记忆三角函数诱导公式的口诀.例如计算:sin240;tan240
sin240=sin(180+60)=-sin60;
sin240=sin(270-30)=-cos30.
以上的180度是90度的偶数(2)倍,结果仍然是原来的函数(正弦),
而270度是90度的奇数(3)倍,结果就变成了原函数的余函数(余弦),
因为原来的角240度是第三项限的角,原函数的符号是负的.
“奇变偶不变”是说,角前面的度数是90度的倍数.如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变)
“符号看象限”是说,要服从原来的角所在的象限中原来函数的符号.
sin240=sin(180+60)=-sin60;
sin240=sin(270-30)=-cos30.
以上的180度是90度的偶数(2)倍,结果仍然是原来的函数(正弦),
而270度是90度的奇数(3)倍,结果就变成了原函数的余函数(余弦),
因为原来的角240度是第三项限的角,原函数的符号是负的.
“奇变偶不变”是说,角前面的度数是90度的倍数.如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变)
“符号看象限”是说,要服从原来的角所在的象限中原来函数的符号.
看了 三角函数6个诱导公式的推导公...的网友还看了以下:
一点小数学问题1.⊙O是△ABC的外接圆,⊙O的半径R=2,sinB=3/4,则弦AC的长为多少?2 2020-03-30 …
初二数学梯形、我最头疼的动点、、28.(13分)如图,把梯形OBCD放在平面直角坐标系中,O为坐标 2020-04-27 …
在△ABC钟,以BC为直径的圆O交AB于D点,交AC于E点,AD=3,SADE=S四边形BCDE, 2020-06-02 …
关于圆的相交相切相离的简单题在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m 2020-07-26 …
关于三棱锥顶点到底面距离的题假设一个三棱锥0-ABC,OA=OB=OC=根号5,AB=AC=2,B 2020-07-30 …
九下习题3.7怎么写在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m,⊙O的 2020-07-31 …
已知极坐标系的极点O与直角坐标系的原点O重合,极轴Ox与x轴非负半轴重合,且两坐标系单位长度相同, 2020-07-31 …
根据两个算式,求口和O各代表多少?O十O十O一口一口=12,口十口十口一O一O=2,口=多少,O=多 2020-11-04 …
算出每个图形算式的得数.口=2,0=3亼=5,O十口一亼=(),亼一口一O=(),O一口十亼=(), 2020-11-04 …
已知三角形中AB=a,AC=b,O为三角形的外心,则向量AO×向量BC(即数量积)=(1/2)[b^ 2020-12-28 …