早教吧作业答案频道 -->数学-->
如图,△ABC的两条高AD,BM相交于E,且EC,∠AEB=105°,∠EAD=45°,求证:(1)AB=2AM,(2)BC=AC;(3)AB-BE=CE;(4)AM-CM=CE如图,△ABC的两条高AD,BM相交于E,连EC,∠AEB=105°,∠EAD=45°,求证:(1)AB=2AM,(2)BC=AC;(3)AB-BE=CE;(4)AM-CM=CE
题目详情
如图,△ABC的两条高AD,BM相交于E,且EC,∠AEB=105°,∠EAD=45°,求证:(1)AB=2AM,(2)BC=AC;(3)AB-BE=CE;(4)AM-CM=CE
如图,△ABC的两条高AD,BM相交于E,连EC,∠AEB=105°,∠EAD=45°,求证:(1)AB=2AM,(2)BC=AC;(3)AB-BE=CE;(4)AM-CM=CE
如图,△ABC的两条高AD,BM相交于E,连EC,∠AEB=105°,∠EAD=45°,求证:(1)AB=2AM,(2)BC=AC;(3)AB-BE=CE;(4)AM-CM=CE
▼优质解答
答案和解析
纠正:(1)∵求AB=2AM,即求∠ABM=30º,∴应为∠BAD=45º
(2)∵∠BAM=60º,∠ABD=45º,∴BC≠AC,应为BE=AC
证明:
∵AM⊥AC,AD⊥BC
∴∠ADB=∠AMB=90º
∵∠AEB=105°,∠BAD=45°
∴∠ABM=180º-∠AEB-∠BAD=30º
∴AB=2AM【30º角所对的直角边等于斜边的一半】(1)完
∵∠BAD=45º
∴∠ABD=45º
∴AD=BD
∵∠DBE=∠ABD-∠ABE=45º-30º=15º
∠CAD=∠BAM-∠BAD=60º-45º=15º
∴∠DBE=∠CAD
又∵∠BDE=∠ADC=90º,BD=AD
∴⊿BDE≌⊿ADC(ASA)
∴BE=AC(2)完
DE=DC
∴∠ECD=∠CED=45º
延长AC至N,使CN=CE,连接EN
则∠CEN=∠N
∵∠ACD=90º-15º=75º
∴∠ACE=∠ACD-∠ECD=75º-45º=30º
∴∠N=½∠ACE=15º
∴∠EAC=∠N
∴AE=EN
即⊿EAN是等腰三角形,且EM⊥AN,根据三线合一
∴AM=MN=MC+CN=MC+CE
∴AM-MC=CE (4)完
∵AB=2AM=AN
AN=AC+CN=AC+CE
AC=BE
∴AB=BE+CE
∴AB-BE=CE(3)完
(2)∵∠BAM=60º,∠ABD=45º,∴BC≠AC,应为BE=AC
证明:
∵AM⊥AC,AD⊥BC
∴∠ADB=∠AMB=90º
∵∠AEB=105°,∠BAD=45°
∴∠ABM=180º-∠AEB-∠BAD=30º
∴AB=2AM【30º角所对的直角边等于斜边的一半】(1)完
∵∠BAD=45º
∴∠ABD=45º
∴AD=BD
∵∠DBE=∠ABD-∠ABE=45º-30º=15º
∠CAD=∠BAM-∠BAD=60º-45º=15º
∴∠DBE=∠CAD
又∵∠BDE=∠ADC=90º,BD=AD
∴⊿BDE≌⊿ADC(ASA)
∴BE=AC(2)完
DE=DC
∴∠ECD=∠CED=45º
延长AC至N,使CN=CE,连接EN
则∠CEN=∠N
∵∠ACD=90º-15º=75º
∴∠ACE=∠ACD-∠ECD=75º-45º=30º
∴∠N=½∠ACE=15º
∴∠EAC=∠N
∴AE=EN
即⊿EAN是等腰三角形,且EM⊥AN,根据三线合一
∴AM=MN=MC+CN=MC+CE
∴AM-MC=CE (4)完
∵AB=2AM=AN
AN=AC+CN=AC+CE
AC=BE
∴AB=BE+CE
∴AB-BE=CE(3)完
看了 如图,△ABC的两条高AD,...的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
1.若O(20°N,90°E)为太阳直射点,弧线EP、FP分别为晨线和昏线的一段,则 ( ) A. 2020-05-17 …
△ABC中,AD⊥BC于D,且CD=AB+BD,∠B的角平分线交AC于点E.求证:E恰好在BC的垂 2020-05-24 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
五元一次方程的解法0.01349/[e+0.6842(1-e)]=a0.8638/[e+0.565 2020-07-16 …
如图,在梯形ABCD中,AD平行BC,CA平分∠BCD,DE平行AC,交BC的延长线于点E,∠B= 2020-07-30 …
变化磁场激发的感应电场满足?如题A.▽·E=0▽×E=0B.▽·E=ρ/ε0▽×E=0C.▽·E=0 2020-12-27 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …