早教吧作业答案频道 -->数学-->
如图,△ABC的两条高AD、BM相交于E,连EC,∠AEB=105°,∠BAD=45°(1)AB=2AM (2)BE=AC (3)AB-BE=CE (4)AM-CM=CE八年级上册新观察P38最后一题
题目详情
如图,△ABC的两条高AD、BM相交于E,连EC,∠AEB=105°,∠BAD=45°
(1)AB=2AM (2)BE=AC (3)AB-BE=CE (4)AM-CM=CE
八年级上册新观察P38最后一题
(1)AB=2AM (2)BE=AC (3)AB-BE=CE (4)AM-CM=CE
八年级上册新观察P38最后一题
▼优质解答
答案和解析
(1)证明:∵BM为△ABM的高.
∴∠BMA=90°
又∵∠AEB=105°,∠BAD=45°
∴∠ABM=180°—105°—45°
=30°
∴AM=1/2AB
即AB=2AM
(2)∵∠AEB=105°,∠BAD=45°
∴∠ABE=30°
∵BM⊥AC
∴∠AMB=90°,
又 ∵∠AEB=105°
∴∠DAC=15°
∵∠BAD=∠ABM+∠CBM=45°
∴AD=BD
∴△BED≌△ACD(ASA)
∴BE=AC
(3)∵△BED≌△ACD(已证)
∴DE=CD,∠DEC=45°
又∠BED=180°-∠AEB=75°
则∠BEC=120°,∠CEM=60°
. 延长EM到N,使EN=CE,连接AN,CN.则⊿CEN为等边三角形,得CE=CN.
∴EM⊥AC
∴EM=NM,得AE=AN.(线段垂直平分线上的点到线段两个端点距离相等)
则∠ANE=∠AEN=180°-∠AEB=75°;∠BED=∠AEN=75°,∠EBD=15°.
∴∠ABN=∠ABD-∠EBD=30°; ∠BAN=180°-∠ABN-∠ANE=75°=∠ANE.
∴AB-BE=BN-BE=EN
=CE.
(4)∵△BED≌△ACD(已证)
∴BE=AC
又∵AB-BE=CE
∴AM+MC+CE=AB
AM-MC=AM-CE
即AM-CM=CE
加油↖(^ω^)↗哈~~~~
∴∠BMA=90°
又∵∠AEB=105°,∠BAD=45°
∴∠ABM=180°—105°—45°
=30°
∴AM=1/2AB
即AB=2AM
(2)∵∠AEB=105°,∠BAD=45°
∴∠ABE=30°
∵BM⊥AC
∴∠AMB=90°,
又 ∵∠AEB=105°
∴∠DAC=15°
∵∠BAD=∠ABM+∠CBM=45°
∴AD=BD
∴△BED≌△ACD(ASA)
∴BE=AC
(3)∵△BED≌△ACD(已证)
∴DE=CD,∠DEC=45°
又∠BED=180°-∠AEB=75°
则∠BEC=120°,∠CEM=60°
. 延长EM到N,使EN=CE,连接AN,CN.则⊿CEN为等边三角形,得CE=CN.
∴EM⊥AC
∴EM=NM,得AE=AN.(线段垂直平分线上的点到线段两个端点距离相等)
则∠ANE=∠AEN=180°-∠AEB=75°;∠BED=∠AEN=75°,∠EBD=15°.
∴∠ABN=∠ABD-∠EBD=30°; ∠BAN=180°-∠ABN-∠ANE=75°=∠ANE.
∴AB-BE=BN-BE=EN
=CE.
(4)∵△BED≌△ACD(已证)
∴BE=AC
又∵AB-BE=CE
∴AM+MC+CE=AB
AM-MC=AM-CE
即AM-CM=CE
加油↖(^ω^)↗哈~~~~
看了 如图,△ABC的两条高AD、...的网友还看了以下:
根据图A和图B回答问题.(1)图A示动作,图B示动作.(2)1和2分别表示两种肌肉,1是,2是.( 2020-05-02 …
根据图A和图B回答问题:(1)图B显示动作,图A显示动作.(2)[1]和[2]分别表示两种肌肉,[ 2020-05-02 …
1图形a 如何变换得到图形b 2图形b 如何变换得到图形c 3你还有什么办法将图形a 变换到图1图 2020-05-16 …
如图,已知A(a,b),AB⊥y轴于B,且满足a−2+(b-2)2=0,(1)求A点坐标;(2)分 2020-06-16 …
如图根据图A和图B回答问题.(1)图B示伸肘伸肘动作,图A示屈肘屈肘动作.(2)[1]和[2]分别 2020-06-17 …
我知道v-t图的斜率是a,但为什么x-t^2图斜率是a/2?做到用x-t^2的图像求加速度时觉得不 2020-06-27 …
填空(1)如图所示的算法功能是;(2)图(a)是某循环框图的一部分,若改为图(b),则运行过程中出 2020-07-16 …
我们知道用几何图形的面积可以解释多项式乘法的运算:(1)如图1,可知:(a+b)2=;(2)如图2 2020-08-02 …
下图是制作人的口腔上皮细胞临时装片的示意图,请据图回答问题:(1)写出其正确的顺序。(2)图A所示范 2020-12-18 …
如图,由图1的三角形ABC沿DE折叠得到图2,图3,图4.(1)如图2,猜想角BDA+角CEA与角A 2020-12-25 …