早教吧作业答案频道 -->数学-->
已知,如图,E、F分别是AB、AC的中点,∠ACD是△ABC的外角,延长EF交∠ACD的平分线于G点,求证:AG⊥CG.
题目详情
已知,如图,E、F分别是AB、AC的中点,∠ACD是△ABC的外角,延长EF交∠ACD的平分线于G点,求证:AG⊥CG.


▼优质解答
答案和解析
证明:∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,AF=CF,
∴EF∥BC,
∴∠FGC=∠GCD.
∵CG平分∠ACD,
∴∠FCG=∠GCD,
∴∠FCG=∠FGC,
∴FG=FC.
又∵AF=CF,
∴FG是△ACG中AC边上的中线,且FG=
AC

∴EF是△ABC的中位线,AF=CF,
∴EF∥BC,
∴∠FGC=∠GCD.
∵CG平分∠ACD,
∴∠FCG=∠GCD,
∴∠FCG=∠FGC,
∴FG=FC.
又∵AF=CF,
∴FG是△ACG中AC边上的中线,且FG=
1 |
2 |
看了 已知,如图,E、F分别是AB...的网友还看了以下:
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)中的g(x)g‘(x)分别代表什么[ 2020-04-26 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b) 2020-06-16 …
已知集合A={5,6,7,8},设f,g都是由A到A的映射,其对应法则分别如表1和表2所示:则与f 2020-07-13 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○ 2020-07-26 …
函数f(x)与y=a^x的图象关于y=x对称,记g(x)=f(x)[f(x)+2f(2)-1].若 2020-08-01 …
设f,g都是由A到B的映射,其中对应法则(从上到下)如下表:则与f[g(1)]相同的是()A.g[ 2020-08-02 …
关于f(g(x))和g(f(x))的问题f(X)是一个一次函数g(x)是个分段函数现在求f(g(x 2020-08-02 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)= 2020-11-24 …
如图所示,以O为支点,杠杆(自重不计)在力F和重力G的作用下,在水平位置处于平衡状态,下列判断中正确 2020-12-17 …