早教吧作业答案频道 -->数学-->
如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.
题目详情
如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.

(1)求证:CD∥AB;
(2)求证:△BDE≌△ACE;
(3)若O为AB中点,求证:OF=
BE.

(1)求证:CD∥AB;
(2)求证:△BDE≌△ACE;
(3)若O为AB中点,求证:OF=
1 |
2 |
▼优质解答
答案和解析
证明:(1)∵BD=CD,
∴∠BCD=∠1;
∵∠1=∠2,
∴∠BCD=∠2;
∴CD∥AB.
(2)∵CD∥AB,∴∠CDA=∠3.
∵∠BCD=∠2=∠3,
∴BE=AE.
且∠CDA=∠BCD,
∴DE=CE.
在△BDE和△ACE中,
∵
.
∴△BDE≌△ACE(SAS);
(3)∵△BDE≌△ACE,
∴∠4=∠1,∠ACE=∠BDE=90°
∴∠ACH=90°-∠BCH;
又∵CH⊥AB,
∴∠2=90°-∠BCH;
∴∠ACH=∠2=∠1=∠4,
∴AF=CF;
∵∠AEC=90°-∠4,∠ECF=90°-∠ACH,
又∵∠ACH=∠4,
∴∠AEC=∠ECF;
∴CF=EF;
∴EF=AF;
∵O为AB中点,
∴OF为△ABE的中位线;
∴OF=
BE.
∴∠BCD=∠1;
∵∠1=∠2,
∴∠BCD=∠2;
∴CD∥AB.
(2)∵CD∥AB,∴∠CDA=∠3.
∵∠BCD=∠2=∠3,
∴BE=AE.
且∠CDA=∠BCD,
∴DE=CE.
在△BDE和△ACE中,
∵
|
∴△BDE≌△ACE(SAS);
(3)∵△BDE≌△ACE,
∴∠4=∠1,∠ACE=∠BDE=90°
∴∠ACH=90°-∠BCH;
又∵CH⊥AB,
∴∠2=90°-∠BCH;
∴∠ACH=∠2=∠1=∠4,
∴AF=CF;
∵∠AEC=90°-∠4,∠ECF=90°-∠ACH,
又∵∠ACH=∠4,
∴∠AEC=∠ECF;
∴CF=EF;
∴EF=AF;
∵O为AB中点,
∴OF为△ABE的中位线;
∴OF=
1 |
2 |
看了 如图,已知AD与BC相交于E...的网友还看了以下:
(2006•荔湾区二模)对于化学反应A+B=C+D,下列说法中不正确的是()A.若A、B为酸和碱, 2020-05-13 …
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
△ABC的内角A,B,C所对的边为a,b,c.①若ab>c2,则C<π3;②若a+b>2c,则C< 2020-06-12 …
△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2 2020-07-09 …
在△ABC中,三个内角A,B,C对应三边长分别为a,b,c.若C=3B,cb的取值范围. 2020-07-21 …
在△ABC中,三个内角A,B,C对应三边长分别为a,b,c.若C=3B,cb的取值范围. 2020-07-21 …
如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求 2020-08-02 …
在△ABC中,内角A,B,C所对的边长分别是a,b,c.若c-acosB=(2a-b)cosA,则 2020-08-03 …
如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠ 2020-11-02 …
如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O与A、 2020-12-14 …