早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.

题目详情
已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是___.
▼优质解答
答案和解析
f(x)为偶函数,可得f(-x)=f(x),
当x<0时,f(x)=ln(-x)+3x,即有
x>0时,f(x)=lnx-3x,f′(x)=
1
x
-3,
可得f(1)=ln1-3=-3,f′(1)=1-3=-2,
则曲线y=f(x)在点(1,-3)处的切线方程为y-(-3)=-2(x-1),
即为2x+y+1=0.
故答案为:2x+y+1=0.