早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设计一个水渠,其横截面为等腰梯形(如图所示),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积y与腰长x的关系式,并求它的定义域和值.

题目详情
设计一个水渠,其横截面为等腰梯形(如图所示),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积y与腰长x的关系式,并求它的定义域和值.
▼优质解答
答案和解析
如图所示,
∵腰长AB=x,∠ABC=120°,∴高h=xcos30°=
3
2
x;
∴上底BC=a-2x(0<x<
a
2
),
下底AD=BC+2•xsin30°=(a-2x)+2x•
1
2
=a-x;
∴横截面的面积为
y=
1
2
[(a-2x)+(a-x)]•
3
2
x=-
3
3
4
x2+
3
2
ax(0<x<
a
2
);
∵0<x<
a
2
,y=
3
2
(-
3
2
x2+ax),
∴当x=
a
3
时,y取得最大值ymax=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号