早教吧作业答案频道 -->其他-->
四边形ABCD内接于圆O,AB是直径,AD=DC,分别延长BA、CD交于E,BF垂直EC,交EC延长线于F,EA=AO,求CF这题我在网上找到了答案,不过对答案中的一个解释有点不懂,现在就发答案上来连结BC,CD,因为AD=
题目详情
四边形ABCD内接于圆O,AB是直径,AD=DC,分别延长BA、CD交于E,BF垂直EC,交EC延长线于F,EA=AO,求CF
这题我在网上找到了答案,不过对答案中的一个解释有点不懂,现在就发答案上来
连结BC,CD,
因为 AD=DC,
所以 弧AD=弧DC,
所以 角CBE=角DOE,
所以 BC//OD,
所以 OD/BC=EO/EB,ED/EC=EO/EB,
因为 AB是直径,EA=AO,BC=12,
所以 OD/12=2/3,OD=8,EA=AO=8,EB=24,
ED/EC=2/3,ED=2EC/3,
因为 ED乘EC=EA乘EB,
所以 3分之2的EC平方=192,EC平方=288,EC=12根号2,ED=8根号2,
因为 角ADE=角CBE,角E公用,
所以 三角形EAD相似于三角形EBC,
所以 AD/BC=EA/EC,
AD/12=8/12根号2,AD=4根号2,
因为 AB是直径,BF垂直EC,
所以 角ADB=角BFC=直角,
又 角FCB=角DAB,
所以 三角形BCF相似于三角形BAD,
所以 CF/AD=BC/AB,
CF/4根号2=12/16,
所以 CF=3根号2.
答案中的ED乘EC=EA乘EB 为什么可以成立,求解释
这题我在网上找到了答案,不过对答案中的一个解释有点不懂,现在就发答案上来
连结BC,CD,
因为 AD=DC,
所以 弧AD=弧DC,
所以 角CBE=角DOE,
所以 BC//OD,
所以 OD/BC=EO/EB,ED/EC=EO/EB,
因为 AB是直径,EA=AO,BC=12,
所以 OD/12=2/3,OD=8,EA=AO=8,EB=24,
ED/EC=2/3,ED=2EC/3,
因为 ED乘EC=EA乘EB,
所以 3分之2的EC平方=192,EC平方=288,EC=12根号2,ED=8根号2,
因为 角ADE=角CBE,角E公用,
所以 三角形EAD相似于三角形EBC,
所以 AD/BC=EA/EC,
AD/12=8/12根号2,AD=4根号2,
因为 AB是直径,BF垂直EC,
所以 角ADB=角BFC=直角,
又 角FCB=角DAB,
所以 三角形BCF相似于三角形BAD,
所以 CF/AD=BC/AB,
CF/4根号2=12/16,
所以 CF=3根号2.
答案中的ED乘EC=EA乘EB 为什么可以成立,求解释
▼优质解答
答案和解析
这是割线定理,你如没学过也可以证明两个三角形相似得到.
看了 四边形ABCD内接于圆O,A...的网友还看了以下:
在四边形ABCD和四边形A,B,C,D,中,已知AB/A,B,=BC/B,C,=CD/C,D,=D 2020-05-01 …
⒈再△ABC核△A'B'C'中.∠A=∠A’,CD和C’D’分别是边AB和A’B’上的中线,再从以 2020-05-13 …
一,已知,如图1,在△ABC中和△A’B’C’ 中,CD和C’D’分别是高,且AC=A’C’,CD 2020-05-16 …
四边形ABCD和四边形A'B'C'D'中,AB:A'B'=BC:B'C'=CD:C'D'=DA:D 2020-06-03 …
化简逻辑函数求大神1,化简逻辑函数Y=Aˊ(CDˊ+CˊD)+BCˊD+ACˊD+AˊCDˊY=A 2020-06-12 …
如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线 2020-06-20 …
在△ABC和△A'B'C'中,∠ACB=∠A'C'B'=90°,CD,C'D'分别是△ABC和△A 2020-06-27 …
求过点E(5,0)且与圆(X+5)2+Y2=36相外切的圆的圆心轨迹方程.设该圆心为D,半径为r, 2020-07-26 …
求两个三角形全等,30分钟内奖100分!决不食言!已知:三角形(ABC,A'B'C')中角平分线(C 2020-11-23 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …