早教吧作业答案频道 -->其他-->
正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为()A.14B.12C.34D.94
题目详情
正三棱锥底面三角形的边长为
,侧棱长为2,则其体积为( )
A.
B.
C.
D.
,侧棱长为2,则其体积为( )
A.
B.
C.
D.
3 3
B.
C.
D.
1 1 4 4
C.
D.
1 1 2 2
D.
3 3 4 4
9 9 4 4
| 3 |
A.
| 1 |
| 4 |
B.
| 1 |
| 2 |
C.
| 3 |
| 4 |
D.
| 9 |
| 4 |
| 3 |
A.
| 1 |
| 4 |
B.
| 1 |
| 2 |
C.
| 3 |
| 4 |
D.
| 9 |
| 4 |
| 3 |
| 1 |
| 4 |
B.
| 1 |
| 2 |
C.
| 3 |
| 4 |
D.
| 9 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
C.
| 3 |
| 4 |
D.
| 9 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
D.
| 9 |
| 4 |
| 3 |
| 4 |
| 9 |
| 4 |
| 9 |
| 4 |
▼优质解答
答案和解析
如图,在正三棱锥P-ABC中,底面边长AB=
,侧棱长PA=2,
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
,
∴CD=
•AB=
×
=
,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
3 3 3,侧棱长PA=2,
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
,
∴CD=
•AB=
×
=
,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
3 3 3,
∴CD=
•AB=
×
=
,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
3 3 32 2 2•AB=
×
=
,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
3 3 32 2 2×
3 3 3=
,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
3 3 32 2 2,
OD=
•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
1 1 13 3 3•CD=
×
=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
1 1 13 3 3×
3 3 32 2 2=
,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
1 1 12 2 2,
PD=
=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
PA2−AD2 PA2−AD2 PA2−AD22−AD22=
=
,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
4−(
)2 4−(
)2 4−(
3 3 32 2 2)22=
13 13 132 2 2,
∴PO=
=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
PD2−OD2 PD2−OD2 PD2−OD22−OD22=
=
,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
(
)2−(
)2 (
)2−(
)2 (
13 13 132 2 2)2−(
)22−(
1 1 12 2 2)22=
3 3 3,
所以,正三棱锥P-ABC的体积为:
V=
•S△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
1 1 13 3 3•S△ABC△ABC•PO=
×
×(
)2×
=
.
故答案为:
.
1 1 13 3 3×
3 3 34 4 4×(
3 3 3)2×
=
.
故答案为:
. 2×
3 3 3=
.
故答案为:
.
3 3 34 4 4.
故答案为:
.
3 3 34 4 4.
| 3 |
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
| 3 |
∴CD=
| ||
| 2 |
| ||
| 2 |
| 3 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
| 3 |
∴CD=
| ||
| 2 |
| ||
| 2 |
| 3 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
∴CD=
| ||
| 2 |
| ||
| 2 |
| 3 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| ||
| 2 |
| 3 |
| 3 |
| 3 |
| ||
| 2 |
| 3 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| ||
| 2 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
| 2 |
OD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 1 |
| 2 |
PD=
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| PA2−AD2 |
4−(
|
| ||
| 2 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
4−(
|
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 3 |
| 3 |
| 3 |
| ||
| 2 |
| 13 |
| 13 |
| 13 |
∴PO=
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| PD2−OD2 |
(
|
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
(
|
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 13 |
| 13 |
| 13 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
所以,正三棱锥P-ABC的体积为:
V=
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 1 |
| 3 |
| ||
| 4 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
| 3 |
| 4 |
看了 正三棱锥底面三角形的边长为3...的网友还看了以下:
棱长都是a的正三棱锥连结各侧面的中心作一个三角形则此三角形的面积是()A.B.C.D. 2020-04-11 …
三棱台ABC-A`B`C`的上下底面均为正三角形三棱台ABC-A'B'C'的上下底面均为正三角形, 2020-05-21 …
三棱台ABC-A`B`C`的上下底面均为正三角形,侧面为等腰梯形,且上下底面的边长比为2:3,分别 2020-05-21 …
ABC-A'B'C'是体积为1的棱柱,则四棱锥C-AA'BB'的体积是图画不了,这个三棱柱的正视图 2020-06-07 …
有两个面互相平行,其他面都是四边形,则这个几何体是什么答案是有可能是棱柱,棱台,还有可能既不是棱柱 2020-07-31 …
1.将一个正方体沿棱剪开,至少可以剪开()条?2.圆柱高3CM,底面半径2cm,侧面积为()π?3 2020-08-01 …
6题、1.地面正方形的长方形,C底=24cn,h=25cm,求S长2.长方体棱长总和28dm,底面是 2020-11-01 …
6题、1.地面正方形的长方形,C底=24cn,h=25cm,求S长2.长方体棱长总和28dm,底面是 2020-11-01 …
已知等腰三角形ABC中AB=ACD为BC边上一点连接AD若△ACD和△ABD都是等腰三角形则∠C的度 2020-11-03 …
三角形内角和高手进⒈已知等腰三角形ABC中,AB=AC,D为BC边上的一点,连接AD,若△ACD和△ 2021-02-01 …