早教吧 育儿知识 作业答案 考试题库 百科 知识分享

正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为()A.14B.12C.34D.94

题目详情
正三棱锥底面三角形的边长为
3
,侧棱长为2,则其体积为(  )

A.
1
4

B.
1
2

C.
3
4

D.
9
4
3
,侧棱长为2,则其体积为(  )

A.
1
4

B.
1
2

C.
3
4

D.
9
4
3
3
3

1
4

B.
1
2

C.
3
4

D.
9
4
1
4
1144
1
2

C.
3
4

D.
9
4
1
2
1122
3
4

D.
9
4
3
4
3344
9
4
9
4
9944
▼优质解答
答案和解析
如图,在正三棱锥P-ABC中,底面边长AB=
3
,侧棱长PA=2,
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
3

∴CD=
3
2
•AB=
3
2
×
3
=
3
2

OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
3
3
33,侧棱长PA=2,
设顶点P在底面的射影为O,连接CO并延长,交AB与点D;
连接PD,则CD⊥AB,PD⊥AB;
在正△ABC中,AB=
3

∴CD=
3
2
•AB=
3
2
×
3
=
3
2

OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
3
3
33,
∴CD=
3
2
•AB=
3
2
×
3
=
3
2

OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
3
2
3
3
3
3
33222•AB=
3
2
×
3
=
3
2

OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
3
2
3
3
3
3
33222×
3
3
33=
3
2

OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
3
2
333222,
OD=
1
3
•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
1
3
111333•CD=
1
3
×
3
2
=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
1
3
111333×
3
2
333222=
1
2

PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
1
2
111222,
PD=
PA2−AD2
=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
PA2−AD2
PA2−AD2
PA2−AD2PA2−AD22−AD22=
4−(
3
2
)2
13
2

∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
4−(
3
2
)2
4−(
3
2
)2
4−(
3
2
)24−(
3
2
3
3
3
3
33222)22=
13
2
13
13
13
13
1313222,
∴PO=
PD2−OD2
=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
PD2−OD2
PD2−OD2
PD2−OD2PD2−OD22−OD22=
(
13
2
)2−(
1
2
)2
3

所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
(
13
2
)2−(
1
2
)2
(
13
2
)2−(
1
2
)2
(
13
2
)2−(
1
2
)2
(
13
2
13
13
13
13
1313222)2−(
1
2
)2
2−(
1
2
111222)22=
3
3
33,
所以,正三棱锥P-ABC的体积为:
V=
1
3
•S△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
1
3
111333•S△ABC△ABC•PO=
1
3
×
3
4
×(
3
)
3
=
3
4

故答案为:
3
4
1
3
111333×
3
4
3
3
3
3
33444×(
3
3
33)
3
=
3
4

故答案为:
3
4
3
3
33=
3
4

故答案为:
3
4
3
4
333444.
故答案为:
3
4
3
4
333444.