早教吧作业答案频道 -->数学-->
已知函数f(x)=sin(π-ωx)coswx+cos²wx(w>0)的最小周期为π⑴求ω的值⑵将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2纵坐标不变,得到函数y=g(x)的图像,求y=g(x)在区间[0,π
题目详情
已知函数f(x)=sin(π-ωx)coswx+cos²wx(w>0)的最小周期为π
⑴求ω的值
⑵将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2 纵坐标不变,得到函数y=g(x) 的图像,求y=g(x)在区间[0,π/16]上的最小值
⑴求ω的值
⑵将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2 纵坐标不变,得到函数y=g(x) 的图像,求y=g(x)在区间[0,π/16]上的最小值
▼优质解答
答案和解析
已知函数f(x)=sin(π-ωx)coswx+cos²wx(w>0)的最小周期为π
⑴求ω的值
⑵将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2 纵坐标不变,得到函数y=g(x)的图像,求y=g(x)在区间[0,π/16]上的最小值
(1)解析:∵函数f(x)=sin(π-ωx)coswx+cos²wx(w>0)的最小周期为π
∴f(x)=sinwxcoswx+cos²wx=1/2sin2wx+1/2cos2wx+1/2
=√2/2sin(2wx+π/4)+1/2
2w=2π/π==>w=1
∴f(x)=√2/2sin(2x+π/4)+1/2
(2)解析:将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2,纵坐标不变
得w=2π/(π/2)=4,g(x)=√2/2sin(4x+π/4)+1/2
∵区间[0,π/16]
4x+π/4=π/2==>x=π/16==>g(x)在x=π/16时取最大值
g(0)=√2/2sin(0+π/4)+1/2=1
g(π/16)=√2/2sin(π/2)+1/2=(√2+1)/2
∴g(x)在区间[0,π/16]上的最小值为g(0)=1
⑴求ω的值
⑵将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2 纵坐标不变,得到函数y=g(x)的图像,求y=g(x)在区间[0,π/16]上的最小值
(1)解析:∵函数f(x)=sin(π-ωx)coswx+cos²wx(w>0)的最小周期为π
∴f(x)=sinwxcoswx+cos²wx=1/2sin2wx+1/2cos2wx+1/2
=√2/2sin(2wx+π/4)+1/2
2w=2π/π==>w=1
∴f(x)=√2/2sin(2x+π/4)+1/2
(2)解析:将函数y=f(x)的图像上各点的横坐标缩短到原来的1/2,纵坐标不变
得w=2π/(π/2)=4,g(x)=√2/2sin(4x+π/4)+1/2
∵区间[0,π/16]
4x+π/4=π/2==>x=π/16==>g(x)在x=π/16时取最大值
g(0)=√2/2sin(0+π/4)+1/2=1
g(π/16)=√2/2sin(π/2)+1/2=(√2+1)/2
∴g(x)在区间[0,π/16]上的最小值为g(0)=1
看了 已知函数f(x)=sin(π...的网友还看了以下:
1若f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内 2020-05-23 …
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[ 2020-06-07 …
高数:若f(x)在[a,b]区间连续,F(x)=[a,x定积分区间]f(x)d(x)+[b,x定积 2020-06-07 …
一个很幼稚但困扰了我很久的问题和以前的y有什么区别么?譬如f(x)=x^2+x和y=x^2+x有区 2020-06-24 …
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数, 2020-06-26 …
设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f 2020-07-14 …
设x1、x2是区间D上的任意两点,若函数y=f(x)满足f(成立则称函数y=f(x)在区间D上下凸 2020-07-29 …
设x1、x2是区间D上的任意两点,若函数y=f(x)满足f(成立则称函数y=f(x)在区间D上下凸 2020-07-29 …
1指数函数y=(1/5)^x的图象与直线y=x交点的横坐标所在的范围2若a^2>b>a>1,试比较 2020-08-01 …
若函数y=f(x)满足f(x+4)=f(x)且f(x)=f(-x),当x∈[2,3]时,f(x)= 2020-08-01 …