早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求

题目详情
如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.
作业搜
(1)求证:BE=2CF;
(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
▼优质解答
答案和解析
作业搜(1)证明:过F作FH⊥BE,
∵四边形ABCD为正方形,
∴∠ABC=∠BCD=90°,
∴∠FHB=∠HBC=∠BCF=90°,
∴四边形BCFH为矩形,
∴BH=CF,
又∵BF=EF,
∴BE=2BH,
∴BE=2CF;
(2) 四边形BFGN为菱形,证明如下:
∵MN⊥EF,
∴∠E+∠EBM=90°,且∠EBM=∠ABN,
∴∠ABN+∠E=90°,
∵BF=EF,
∴∠E=∠EBF,
∴∠ABN+∠EBF=90°,
又∵∠EBC=90°,
∴∠CBF+∠EBF=90°,
∴∠ABN=∠CBF,
∵四边形ABCD为正方形,
∴AB=BC,∠NAB=∠CBF=90°,
在△ABN和△CBF中
∠ABN=∠CBF
AB=BC
∠NAB=∠BCF

∴△ABN≌△CBF(ASA),
∴BF=BN,
又由旋转可得EF=FG=BF,
∴BN=FG,
∵∠GFM=∠BME=90°,
∴BN∥FG,
∴四边形BFGN为菱形.