早教吧作业答案频道 -->数学-->
如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求
题目详情
如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.

(1)求证:BE=2CF;
(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.

(1)求证:BE=2CF;
(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
▼优质解答
答案和解析
(1)证明:过F作FH⊥BE,
∵四边形ABCD为正方形,
∴∠ABC=∠BCD=90°,
∴∠FHB=∠HBC=∠BCF=90°,
∴四边形BCFH为矩形,
∴BH=CF,
又∵BF=EF,
∴BE=2BH,
∴BE=2CF;
(2) 四边形BFGN为菱形,证明如下:
∵MN⊥EF,
∴∠E+∠EBM=90°,且∠EBM=∠ABN,
∴∠ABN+∠E=90°,
∵BF=EF,
∴∠E=∠EBF,
∴∠ABN+∠EBF=90°,
又∵∠EBC=90°,
∴∠CBF+∠EBF=90°,
∴∠ABN=∠CBF,
∵四边形ABCD为正方形,
∴AB=BC,∠NAB=∠CBF=90°,
在△ABN和△CBF中
∴△ABN≌△CBF(ASA),
∴BF=BN,
又由旋转可得EF=FG=BF,
∴BN=FG,
∵∠GFM=∠BME=90°,
∴BN∥FG,
∴四边形BFGN为菱形.
(1)证明:过F作FH⊥BE,∵四边形ABCD为正方形,
∴∠ABC=∠BCD=90°,
∴∠FHB=∠HBC=∠BCF=90°,
∴四边形BCFH为矩形,
∴BH=CF,
又∵BF=EF,
∴BE=2BH,
∴BE=2CF;
(2) 四边形BFGN为菱形,证明如下:
∵MN⊥EF,
∴∠E+∠EBM=90°,且∠EBM=∠ABN,
∴∠ABN+∠E=90°,
∵BF=EF,
∴∠E=∠EBF,
∴∠ABN+∠EBF=90°,
又∵∠EBC=90°,
∴∠CBF+∠EBF=90°,
∴∠ABN=∠CBF,
∵四边形ABCD为正方形,
∴AB=BC,∠NAB=∠CBF=90°,
在△ABN和△CBF中
|
∴△ABN≌△CBF(ASA),
∴BF=BN,
又由旋转可得EF=FG=BF,
∴BN=FG,
∵∠GFM=∠BME=90°,
∴BN∥FG,
∴四边形BFGN为菱形.
看了 如图,已知正方形ABCD,E...的网友还看了以下:
点B,F,C,E在同一直线上,AC,DF相交于点G,AB垂直BE,垂足为B,DE垂直BE,垂足为E 2020-04-26 …
,点B,F,C,E在同一直线上,AC,DF相交于点G,AB垂直BE,垂足为B,DE垂直BE,垂足为 2020-04-26 …
一道高中椭圆的计算题!在线等…椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F(- 2020-05-13 …
过点P(3.2)的双曲线H:x2/a2-y2/b2=1(2表示平方)的左焦点为f(-c,0),斜率 2020-05-23 …
如图,点A,F,C,D在同一条直线上,点B和点E分别在直线AD两侧,且AB=DE,∠A=∠D,AF 2020-07-13 …
(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线O 2020-07-14 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …
若f(x)在[a,b]上可导,若c为(a,b)内一定点,且f(c)>0,(x-c)f'(c)≥0, 2020-07-30 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F(c,0),(c>b).过原 2021-01-11 …